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ABSTRACT 

The development of mass spectrometry (MS) instrumentation for novel biological 

applications, specifically, the development of instrumentation that integrates ion/ion reaction 

capabilities in an ion trap (IT) with ion mobility-quadrupole-time-of-flight (IMS-q-TOF) 

analysis is presented. Chapter 1 provides a general introduction to protein analysis by MS, 

ion/ion reactions and ion/ion reaction instrumentation, and IMS techniques and IMS 

instrumentation. Chapter 2 describes the construction and performance of a linear ion trap 

(LIT) made with primarily commercially available components. The LIT has two ion sources 

for independent analyte ion and reagent ion formation. The LIT functions as a reaction vessel 

for gas-phase ion/ion reactions and as a mass spectrometer using mass-selective axial ejection. Initial 

experiments demonstrate the LIT’s ability to perform both dual polarity storage mode and 

transmission mode proton transfer ion/ion reactions. Chapter 3 describes the construction and 

performance of an IT-IMS-q-TOF with three independent ion sources. This instrument is the 

first MS to combine ion/ion reaction capabilities with IMS-q-TOF analysis. Chapter 4 

describes novel experiments performed on the IT-IMS-q-TOF instrument constructed in our 

lab. The gas phase conformation of cytochrome c ions in multiple different charge states is 

investigated using proton transfer ion/ion reactions and IMS-q-TOF analysis. 
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CHAPTER 1. 

General Introduction 

Biological Mass Spectrometry 

 Over the last 15 to 20 years, mass spectrometry (MS) has become more important in 

the area of biological molecule identification [1]. Specifically, advances in MS 

instrumentation and analytical methods have improved the speed, specificity, and sensitivity 

of MS, making it an appealing technique for protein identification and structural 

characterization.  

 Early experiments in protein analysis used fast atom bombardment (FAB) [2] and 

plasma desorption [3] to create gaseous peptide ions. These methods suffered from the 

limitation that they were able to ionize peptides, but not intact proteins. The development of 

two ionization techniques in the late 1980’s, namely electrospray ionization (ESI) [4] and 

matrix assisted laser desorption/ionization (MALDI) [5] had major impacts on the analysis of 

biological molecules. Electrospray and MALDI have since become the popular ionization 

methods for most biological molecules including peptides, proteins, oligonucleotides, and 

carbohydrates. Both ESI and MALDI typically create protonated ions—i.e. protons are 

attached to the analyte molecule that carries the charge.  Therefore, the mass-to-charge ratio 

(m/z) of the ion is the mass of the neutral molecule plus the mass of the proton(s) attached to 

the molecule divided by the total charge of the ion. 

In a MALDI experiment, the analyte ions created are predominantly singly charged 

[6]. When using MALDI for protein analysis, the m/z range of the mass analyzer must be 

considered. For example, cytochrome c is a small protein with molecular weight of 12228. 

The +1 charge state of cytochrome c generated by MALDI will have an m/z of 12229 Th. 
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The mass analyzer must have an m/z range above the mass of this ion; time-of-flight (TOF) 

is commonly used. 

Alternatively, ESI creates ions in a distribution of charge states that are usually highly 

multiply charged [4]. Using cytochrome c as an example again, an ESI spectrum of 

cytochrome c can have charge states ranging from ~+5 to ~+20 (m/z = 2447 to m/z = 612) 

depending on solution conditions. These higher charge states allow for the analysis of intact 

proteins using mass analyzers with lower m/z ranges such as quadrupoles.  

A very significant analog of ESI, known as nano-electrospray ionization or nanospray 

[7], has become a popular technique. There are several advantages of nano-ESI over 

traditional ESI. Less sample is consumed with nano-ESI—the flow rate of nano-ESI is ~10 

nL/min opposed to ~10 µL/min. Nano-ESI is more sensitive than traditional ESI. The sample 

does not have to be pumped in nano-ESI. A stable spray cannot be generated in ESI with a 

100% water solution. An organic modifier, such as methanol, needs to be added to the ESI 

spray solution. Nano-ESI creates smaller initial droplets, therefore, it can create a spray with 

100% water solution, so no organic modifier is needed [7]. 

There have been two general methods developed for protein identification and 

characterization known as “bottom-up” protein analysis and “top-down” protein analysis. 

Each of these techniques will be described below. 

 

“Bottom-up” Protein Analysis 

 Bottom-up protein analysis is started by utilizing a one- or two-dimensional (2D) gel 

electrophoresis separation of a mixture of proteins. The individual spots are then extracted 

and subjected to proteolysis [1]. The peptides created from the digests are then measured 
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directly by MS. The masses of the peptides create a mass fingerprint that is characteristic of 

the original protein. The peptide masses are then used in a database search that identifies the 

protein [8, 9]. This technique is most useful for proteins from relatively pure samples.  

In the context of the bottom-up approach it is sometimes more useful to subject the 

peptides to tandem MS (MS/MS) analysis [10]. Briefly, MS/MS involves the isolation of a 

single m/z ion followed by fragmentation of the ion. The fragmentation is usually achieved 

by collision induced dissociation (CID), using collisions between the ions and a neutral 

buffer gas. The fragment ions are then mass analyzed. The MS/MS spectra of the peptides 

carry information on the amino acid sequence of the peptide and, in turn, the parent protein 

[11]. 

In bottom-up experiments there may be many isobaric peptides (peptides with the 

same m/z, but different amino acid sequence). A common technique used to address this 

problem is to perform a liquid chromatography (LC) separation after the digestion and before 

MS and MS/MS analysis. The isobaric peptides, while they appear at the same place in the 

mass spectrum may have different retention times in the LC separation, and are therefore 

separated. The separated peptides are then subjected to MS/MS experiments in which their 

sequence is identified. These LC separations greatly increase the number of proteins that can 

be identified in a single experiment [12-14], and they can be done either online with the MS, 

or fractions of the LC effluent can be collected and analyzed individually by MS. 

There are some very significant limitations to the bottom-up approach of protein 

analysis. Some proteins, such as hydrophobic membrane proteins, proteins at low abundance, 

and proteins with extremely high or low isoelectric points are poorly represented in gel 

electrophoresis separations [11, 15]. These effects are also overcome by utilizing LC 



www.manaraa.com

4 

 

separation prior to MS. A second issue with the bottom-up approach is that when an 

unfractionated protein mixture is digested, it greatly increases the number of components to 

be analyzed by MS and complicates the isolation of individual diagnostic peptides or single 

parent peptides to be dissociated [11]. Third, even though only one unique peptide is needed 

to indentify a protein, a lot of time can be spent unnecessarily analyzing multiple peptides of 

the same protein, or the same peptide may be present in multiple LC peaks. Fourth, up to 

25% of peptide MS/MS spectra are unassignable due to factors such as the spectrum being 

too complex, the peptide ions are too low in abundance, or there is no diagnostic ion for the 

protein [11, 16]. Therefore, there are proteins in the mixture that are not identified. Lastly, 

the proteins are digested before analysis, causing information about the proteins to be lost. 

For example, the molecular weight of the proteins is not measured, which can give 

information about possible post-translational modifications. Also, some peptides generated 

from protein digests are not represented in the mass spectrum, making complete protein 

structure analysis impossible. Due to these limitations of bottom-up protein analysis, new 

methods were developed to address the problems. 

 

“Top-down” Protein Analysis  

 Top-down protein analysis was pioneered by McLafferty and co-workers [11, 17]. 

Protein primary structure (i.e. the amino acid sequence) can be identified from the direct 

measurement of the intact protein by MS and MS/MS experiments. In a typical top-down 

experiment, a mixture of intact proteins is transformed into gaseous ions by ESI and 

transferred into the MS. A mass spectrum of all the ions is taken, providing molecular weight 

information for all the proteins in the sample. Then, one by one, protein ions in a single 
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charge state are isolated and fragmented, and the fragment ions are mass analyzed. The 

combination of the protein molecular weight and partial sequence information from the 

MS/MS spectrum can provide enough information to identify the protein [18, 19]. The 

identification can be made by the ‘sequence tag’ method [20-22], database searching of the 

fragment ion spectrum [23], or through ‘de novo’ sequencing [24, 25].  

 There are several advantages of the top-down method. First, there is much less 

sample preparation in top-down analysis. There is no in-gel or solution phase digestion of the 

proteins prior to MS. Second, there is less of a need for multi-dimensional separation before 

the MS analysis [26]. A complex mixture of intact proteins can still have fewer total 

components than a mixture of peptides generated from a digest of a single protein. Third, 

intact protein masses from several proteins are spread over a wider m/z range than the 

peptide masses from a digest, making the spectra less complex. Fourth, redundant peptide 

identification is avoided. Fifth, by performing MS/MS on intact proteins, the entire sequence 

of the protein is available for analysis [11]. Therefore, the protein can be completely 

characterized more easily, including possible total primary structure and any post-

translational modification identities and locations [23, 27-29].  

 Even though there are major advantages to top-down protein analysis, there are also 

some challenges. The first challenge was overcome when ionization techniques were 

developed, namely ESI and MALDI, that can transform intact protein ions into the gas phase. 

The second challenge is the development of mass analyzers with the performance 

characteristics to generate significant structural information from intact protein ions. The 

voltage required to fragment an ion is inversely proportional to the ion’s charge. Therefore, 

+1 protein ions are very difficult to fragment. Ions created by MALDI are primarily +1. 
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Conversely, ESI creates protein ions that are highly multiply charged, so the protein ions 

generated from ESI fragment more readily than those made with MALDI.  

An added difficulty with the interpretation of an MS/MS spectrum of a multiply 

charged intact protein ion formed via ESI is that the fragment ions will have charges ranging 

from +1 up to the charge of the precursor protein ion. It is possible for two fragment ions 

with different masses and different charges to appear at the same nominal mass in the 

MS/MS spectrum. Therefore, in order to interpret the fragment ion mass spectrum, the charge 

on each ion must be determined because the charge is not known beforehand. The best way 

to determine the charge state of an ion is to measure the isotopic distribution (mainly  13C) of 

the protein fragment ions. The separation of the isotopic peaks is equal to 1/ion charge, so as 

the ion charge state increases the separation of the isotopic peaks decreases. Early MS/MS 

experiments with intact proteins were done on triple quadrupole instruments with limited 

mass resolution that could not resolve the isotopic peaks of the multiply charged fragment 

ions [30-35]. These experiments resulted in spectra in which the ion's charge states could not 

be identified completely, limiting the usefulness of the spectra to protein fingerprinting 

analysis [11, 32]—a method that compares uninterpreted fragment ion spectra for protein 

identification. Two methods have been developed to overcome the product ion charge state 

ambiguity problem—high resolution fragment ion analysis and fragment ion charge state 

manipulation. Each method will be discussed further below. 

 

High Resolution MS. High mass resolution instrumentation can be used to resolve 

the 13C isotopic distribution of the multiply charged fragment ions. The first instruments used 

for these analyses were Fourier transform-ion cyclotron resonance (FT-ICR) [17, 20, 22-25, 
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27, 28, 36-40] mass spectrometers that have mass resolving power greater than 100000 and 

mass accuracies better than 10 ppm. FT-ICR instruments have suitable performance that 

allows for fragment ion charge state interpretation, so protein sequence information can 

readily be obtained from the MS/MS spectra of intact, multiply charged protein ions. 

Multiple ion activation techniques have been employed in FT-ICR instruments to fragment 

intact proteins: CID, also known as collisionally activated dissociation (CAD) [27, 36-41], 

infrared multi-photon dissociation (IRMPD) [42, 43], and blackbody infrared radiative 

dissociation [44]. Electron capture dissociation (ECD) [45-48] is a technique that gives 

complementary fragmentation to the methods stated above was developed by McLafferty and 

co-workers. An example of ECD of the intact protein cytochrome c followed by high 

resolution MS is shown in Figure 1 [48]. The multiply charged protein ion captures a low 

energy electron, creating an odd electron species that quickly dissociates via cleavage of the 

N—αC bond of the protein or peptide backbone. The resulting fragment ions are referred to 

as “c” and “z” ions. These fragment ions are different than the “b” and “y” ions usually 

formed by the cleavage of the C—N amide bond in CID. Labile post-translational 

modifications, such as phosphorylation and glycosylation, are usually dissociated from the 

protein in CID but not ECD, allowing for their identity and position along the protein 

backbone to be determined [28, 49].  

More recently, the Orbitrap mass spectrometer [50] was developed for high resolution 

mass measurements. These instruments are capable of 150,000 mass resolution and 2-5 ppm 

mass accuracy.[50] An added advantage of the Orbitrap is that there is no superconducting 

magnet like in FT-ICR. The Orbitrap operates using only static DC voltages, so compared to 

the FT-ICR, it is simpler and less expensive to maintain. 
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Ion/Ion Reactions. Ion/ion reactions are gas phase reactions inside the mass 

spectrometer. Positive and negative ions are trapped simultaneously in the same volume, 

usually in an ion trap [11], and the electrostatic attraction of the ions creates an overlap of the 

ion clouds. The reaction occurs either via the creation of a long lived reaction complex, via a 

hopping mechanism, or via a coulombically bound orbit [51]. In either case, the multiple 

charging associated with ESI is advantageous because as the positive and negative ions react, 

there will still be a net charge associated with the reaction pair, allowing traditional ion optics 

to be used to control the reactants. 

The use of ion/ion reactions is the second method used to overcome the charge state 

ambiguity of multiply charged protein fragment ions. Specifically, proton transfer ion/ion 

reactions are used to reduce the fragment ion charge to primarily +1 [11, 21, 52-62]. The 

reagent ion is chosen to enable the stripping of protons from the protein fragment ions, 

thereby reducing the charge. Reducing the charge on the fragment ions to primarily +1 

expands the ion population out on the m/z scale, creating more space between peaks and 

separating fragment ions that initially had different mass and different charge but the same 

m/z. It also lessens the requirements of the mass spectrometer resolving power and mass 

accuracy. With the use of proton transfer ion/ion reactions, structural information of multiply 

charged protein fragment ions can be obtained using mass analyzers with resolving powers of 

m/∆m ~500 to 1000 [21, 59-62]. An example of proton transfer ion/ion reactions being used 

to identify fragment ions generated from CID of the intact protein ubiquitin is shown in 

Figure 2 [63]. 
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Another type of ion/ion reaction that has recently been developed and studied is 

electron transfer dissociation (ETD) [64]. When using ion traps for protein analysis, ECD is 

not possible without adding a magnet to the instrument [65]. Ion traps have a low mass cut-

off (LMCO), or a minimum m/z that can be trapped. Free electrons have an m/z that is much 

lower than that of even the lightest ion, therefore, they cannot be trapped by an ion trap. ETD 

is the ion/ion reaction equivalent to ECD.  Positive protein or peptide ions are reacted with a 

reagent ion that acts as an electron donor. The electron is transferred from the reagent ion to 

the protein or peptide ion, which then dissociates to create the same c and z ions as ECD 

[64].  

McLuckey and coworkers have discovered reagent ions that enable other types of 

ion/ion reactions. Cation switching reactions [66, 67] use protonated protein or peptide ions 

with a metal containing anion. For example, consider the reaction between a doubly 

protonated peptide [M+2H]2+ and Na(NO3)2
-. The products of this reaction are [M+Na]+ and 

2HNO3. The cation has replaced the protons on the peptide as the charge carrier. The last 

type of ion/ion reaction that has been developed is a charge inversion reaction. Reagent ions 

have been found that can transfer multiple protons in a single step, so charge inversion 

reactions are possible without going through a neutral intermediate [68]. These reactions can 

transform a depronated, negatively charged ion into a prontated, positively charged ion and 

vice versa.  

Each of these reactions, proton transfer, ETD, cation switching, and charge inversion 

have useful properties for structural characterization of protein ions, but not every MS is 

capable of ion/ion reactions. The next section will discuss instrument capabilities needed for 

ion/ion reactions and a brief history of ion/ion reaction instrumentation development. 
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Instrumentation for Ion/Ion Reactions. Instruments capable of ion/ion reactions 

must have several key components. First, there needs to be a gas phase ion/ion reaction 

vessel that provides for physical overlap between the analyte and reagent ions. Second, there 

must be at least two distinct ion sources to create both polarities of ions in a single 

experiment. Third, the instrument should have MS/MS capabilities for protein structural 

analysis. Finally, there must be a mass analyzer. 

The gas phase reaction vessel has either been external to the MS vacuum system at 

near atmospheric pressure or inside the MS at pressures in the millitorr range [69]. The 

external reaction vessels used have been a y-tube reactor prior to quadrupole MS, using two 

ESI emitters[70] or one ESI and one atmospheric pressure chemical ionization (APCI) source 

[70, 71], and a charge reduction chamber prior to TOF MS, using one ESI source and either 

an α-particle source [72], or a corona discharge source [73]. The advantages of these 

techniques are ease of integration to various MS instruments, flexibility with the type of MS 

used for mass analysis, and no restriction of the reactions caused by trapping parameters [69]. 

Conversely, these reaction chambers are limited to reducing the charge of all ions created by 

the analyte ESI source with little control over any of the reactant or product ions, and there is 

no possibility of MS/MS experiments prior to the ion/ion reaction event [69]. More flexibility 

in the ion/ion reaction parameters has been achieved when using reaction vessels inside the 

MS. 

To date all ion/ion reaction experiments inside the MS have been done in 

electrodynamic ion traps [69], including 3d quadrupole traps based on the Paul trap [54] and 

linear ion traps based on linear quadrupoles [64, 74-76]. Ion traps have several characteristics 
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that make them attractive as gas phase reaction vessels. They provide simple methods for 

simultaneous storage of both positive and negative ions. They are capable of multi-stage MS 

measurements (MSn) via “tandem in time” experiments [77],  including ion/ion reaction steps 

in between stages of MS [69], satisfying the requirement for MS/MS for protein structure 

analysis. Finally, ion traps allow for separation of the ionization and ion/ion reaction events 

because ions can be created outside the ion trap and injected into the trap for reaction and 

mass analysis. 

The 3d ion trap (Figure 3 [78]) consists of a ring electrode between two endcap 

electrodes. It is able to trap both positive and negative ions simultaneously in all 3 

dimensions using only the RF voltage applied to the ring electrode [79, 80]. A bath gas inside 

the ion trap, typically He at a pressure of ~1 mTorr, is used to cool the ions to the center of 

the trap. The cooling promotes spatial overlap of the ion clouds and minimizes the relative 

translational energy of the reactant pair [69], which affects the ion/ion reaction rate [81]. This 

bath gas is also beneficial for mass analysis in ion traps regardless of whether ion/ion 

reactions are performed or not [69]. Therefore, no modifications need to be made to 3d ion 

traps to enable ion/ion reactions. 

The multiple ion sources for ion/ion reactions using 3d ion traps have been 

configured in many different orientations. Early ion/ion reaction experiments in 3d ion traps 

utilized inter-ion trap ionization by electron impact ionization (EI) or chemical ionization 

(CI) with the electron beam coming through a hole machined in the ring electrode [80]. The 

second source was an ESI source used to create multiply negatively charged ions that were 

admitted to the ion trap through a hole one of the endcap electrodes. Both proton transfer [80, 

82] and electron transfer reactions [83] of multiply charged anions were studied. 
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The first instrument used to study the reactions between multiply charged cations and 

singly charged anions was a 3d ion trap with an ESI source that admitted ions through an 

endcap electrode of the ion trap and an atmospheric sampling glow discharge ionization 

(ASGDI) source that admitted ion into the trap through a hole machined through the ring 

electrode of the ion trap [54]. This instrument was used primarily for the study of proton 

transfer ion/ion reactions of multiply charged proteins.REF Another instrument with a similar 

configuration was developed by the Glish group [84]. In these studies the ASGDI source was 

replaced with a laser desorption source for the study of reactions between multiply charged 

peptide or protein ions with either Fe+ or FeCO2
-. 

Some significant disadvantages limit the usefulness of admitting ions through the ring 

electrode of 3d ion traps. Namely, the trapping efficiency of ions admitted through the ring 

electrode is lower than that for ions admitted through the endcap [69]. Also, the ions 

admitted through the ring electrode experience stronger fields than ions admitted through the 

endcap, causing more fragmentation [85]. Therefore, it was beneficial to develop 

instrumentation to admit both analyte and reagent ions through the endcap electrode. 

The “dueling” ESI ion trap mass spectrometer [86] was developed that integrates two 

ESI sources arranged 180o from each other and 90o from the main optical axis of the 

instrument. The ions are steered down the main optical axis of the instrument by a turning 

quadrupole. In order to sequentially fill the ion trap with positive and negative ions, the DC 

voltages on the turning quadrupole and the lenses between it and the ion trap are switched 

using computer controlled switches. This instrument was the first to allow ion/ion reaction 

experiments between opposite polarity, multiply charged ions created by ESI in an ion trap 

reaction vessel [87, 88].  
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The integration of multiple ion sources through a turning quadrupole led to more 

complex instrumentation that incorporated multiple different ion sources. Badman and co-

workers developed an ion trap instrument with four independent ion sources; two ESI 

sources and one source for either ESI or ASGDI are integrated through the turning 

quadrupole and one ASGDI source is orthogonal to the ion trap that admits ions through the 

ring electrode of the ion trap [63]. This instrument is capable of creating multiple different 

reagent ions from distinct ion sources to enable different types of ion/ion reactions in a single 

experiment. For example, positive cytochrome c ions from one ESI source were reacted with 

negative cytochrome c ions from the second ESI source to create positive cytochrome c 

dimer ions. These first generation product ions were then charge reduced using PDCH ions 

generated at the orthogonal ASGDI source [63]. Several novel combinations of 

analyte/reagent ions have been reacted in sequential ion/ion reactions using this instrument 

[68, 89, 90]. The design of having three independent ion sources integrated to an ion trap 

through a turning quadrupole is the technique used in the instrumentation developed in our 

lab, the results of which are presented in chapters 2, 3, and 4 of this dissertation. 

Six years ago two new linear ion traps (LIT) [91, 92] were introduced. Both of these 

devices are based on linear quadrupoles that provide the trapping in the radial direction (x 

and y-directions ) using the RF voltages applied to the quadrupole rods, and the trapping in 

the axial direction (z-direction, i.e. the central axis of the quadrupole array) is provided by 

DC voltages on the entrance and exit lenses. However, there are significant differences 

between the two types of LITs. 

The Thermo Finnigan LTQ is made from a quadrupole rod array that is divided into 

three sections—a short section 12 mm long at the front, the main rod section that is 37 mm 
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long, and a second short section 12 mm long at the back—also known as a tri-filter 

configuration. A diagram of the LTQ is shown in Figure 4 [92]. Each rod section has the 

same RF voltage applied to it, but they all have independent DC bias voltages applied to 

them, allowing the ions to be moved from one section to another. The LTQ uses a radial 

ejection technique. Narrow slots are cut in the center section of one opposing set of rods. The 

ions are ejected from the LIT through these slots cut in the rods and are collected by an ion 

detector. The tri-filter configuration also helps the radial ion ejection event avoid the fringe 

fields near the ends of the rods [92].  

The other type of LIT, the QTRAP developed by ABI /MDS Sciex (Figure 5)[91], is 

based on the ion path of a triple qudrupole MS. These instruments can use either quadrupole 

2 (q2) or qudrupole 3 (Q3) as LITs. The LITs in this design are single section quadrupole 

rods without the tri-filter capabilities of the LTQ. They also employ a different ejection 

technique called mass selective axial ejection (MSAE) [93] that utilizes the fringe field 

coupling of the RF voltage applied to the LIT rods with the DC voltage applied to the exit 

lens of the LIT to eject the ions axially out of the LIT.  

Dual polarity trapping in LITs is not achieved when using DC trapping voltages on 

the entrance and exit lenses. Two methods have been developed to simultaneously trap both 

polarity ions in all three directions on these LITs. The first method is the addition of an 

auxiliary RF voltage to the containment lenses of the LIT to store both polarity of ions in all 

three dimensions as demonstrated by the Hunt group on a modified Finnigan LTQ linear ion 

trap [64]. These experiments take advantage of the tri-filter configuration of this LIT, as 

shown in Figure 6 [64]. During an ion/ion reaction experiment the analyte ions are injected 

and moved into the front (left) section of the LIT. The reagent ions are then injected into the 



www.manaraa.com

15 

 

back (right) and/or center section of the LIT (the reagent ion source is at the back of the LIT, 

while the analyte ion source is at the front, see Figure 6). The reagent and analyte ions are 

mixed by simultaneously removing the DC bias between the rod sections, removing the DC 

bias between the rods and the containment lenses, and adding the auxiliary RF voltage to the 

containment lenses. Finally, the reaction is ended by simultaneously removing the auxiliary 

RF and adding the repulsive DC bias to the containment lenses. Segregating the ions prior to 

ion/ion reaction allows for isolation of a single reagent ion prior to the ion/ion reaction, 

giving an added level of control over the type of reaction that is enabled, especially if 

multiple reagent ions are generated by a single ion source [94]. 

A second method for dual polarity trapping in an LIT was developed by the 

McLuckey lab. This method employs an unbalanced RF field in the quadrupole rod array 

[74]. When the DC bias on the containment lenses and the rod array are equal, subtracting a 

portion of the RF amplitude from one pair of quadrupole rods and adding an equivalent 

portion of RF amplitude to the other quadrupole rod pair causes the ions to feel an axial RF 

field near the entrance and exit lens that is similar to applying the auxiliary RF voltage 

directly to the lenses as described above. Ion/ion reactions using this method were carried out 

in a prototype QTRAP mass spectrometer with Q3 (see Figure 5) as the ion/ion reaction 

vessel. However, the presence of an axial RF field detracts from the performance of the LIT, 

such as lowering the injection efficiency of the LIT and degrading the MSAE performance. 

Therefore, further experiments on these QTRAP instruments, using either q2 [95] or Q3[96] 

as the ion/ion reaction vessel, have used the addition of an auxiliary RF voltage on the 

containment lenses because the axial RF field can be turned off during analyte ion injection 

and MSAE steps. 
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A new method for ion/ion reactions in an LIT has been developed to avoid the need 

for dual polarity trapping. Transmission mode reactions [97, 98] are ion/ion reactions in 

which at least one polarity of ions participating in the reaction are not trapped during the 

reaction. There are essentially three methods for enabling transmission mode ion/ion 

reactions in an LIT. First, both polarity of ions can be passed through the LIT in opposite 

directions. This method has not been demonstrated yet. Second, the analyte ions can be 

trapped in the LIT, and the reagent ions are transmitted through the trapped analyte ions [97, 

98]. Third, the reagent ions are trapped, and the analyte ions are passed through the trapped 

reagent ions [76, 97, 98]. An advantage of transmission mode reactions is that no additional 

electronics are required to superimpose the auxiliary RF on the containment lenses or to 

unbalance the RF on the quadrupole rod array. 

The ion source configurations for ion/ion reactions in LITs have also gone through 

several generations of instrumentation, depending greatly on the method of ejection from the 

ion trap. Radial ejection LITs, such as the Finnigan LTQ [92], have both ends of the LIT 

available for ion injection. Therefore, these LITs have two ion sources positioned at opposite 

ends of the LIT as seen in Figure 6 [64]. Recently, the LTQ-Orbitrap hybrid instrument [99] 

was shown to enable ETD reactions using two ion sources still positioned at opposite ends of 

the instrument. The difference is that the reagent ions must pass through multiple collision 

cells and the c-trap [100] before reaching the LIT. 

The other LIT ion ejection method, MSAE, differs from radial ejection in that the 

ions are ejected out of the end of the quadrupole array instead of radially through slots cut in 

the rods. The implication of MSAE on ion/ion reactions is that only one end of the LIT is 

available for ion injection. The first ion/ion reaction experiments on an LIT that employed 
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MSAE used two ion source interfaces with the LIT. The analyte ions were admitted to the 

LIT using an ESI source on the optical axis of the instrument, and the reagent ions were 

injected radially into the LIT by an ASGDI source mounted orthogonal to the LIT [76]. 

Radial injection of the reagent ions requires instrument hardware modification to add the 

atmosphere to vacuum interface and ion optics orthogonal to the LIT reaction vessel. In order 

to avoid these modifications, it was beneficial to develop methods to axially inject either 

positive or negative ions into the LIT.  

Two methods have been developed to axially inject either positive or negative ions 

into an axial ejection LIT—sonic spray ionization and multiple pulsed ion sources. Sonic 

spray ionization (SSI) [101, 102] has been shown to create both positive and negative ions in 

a single spray. Using electronics that switch the voltages on the ion optics, ion/ion reaction 

experiments using a single SSI source as the ion source for both analyte and reagent ions has 

been investigated [103]. An advantage of SSI is that both polarity of ions are focused into the 

LIT using the same set of ion optics with different voltages applied to them and the same 

atmosphere to vacuum interface, simplifying the instrument hardware. Conversely, a 

drawback of SSI as the dual polarity source is that the analyte and reagent molecules must be 

sprayed from the same solution, presenting an increase in the probability of matrix 

suppression of the analyte or reagent ions [69]. 

A second method to axially inject either polarity of ions into the LIT, a pulsed dual 

ESI source, was developed by Mcluckey and co-workers [95]. Like SSI, the pulsed dual ESI 

source uses a single atmosphere to vacuum interface and one set of ion optics to inject both 

positive and negative ions into the LIT. The source consists of a nano-ESI emitter for analyte 

ion formation and an ESI emitter for reagent ion formation. The nano-ESI and ESI emitters 
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are pulsed on and off to sequentially inject positive and negative ions into the LIT. This 

arrangement overcomes the matrix suppression effects of SSI because the ionization of each 

reactant species can be independently optimized with distinct ESI emitters. This source was 

shown to enable proton transfer, charge inversion, and protein-protein complex formation 

[95]. A similar ion source was developed that incorporated one nano-ESI and one APCI 

emitter that also operates in a pulsed fashion [104]. This source has been shown to enable 

proton transfer and ETD ion/ion reactions [104]. Using pulsed ion sources for ion/ion 

reactions is not limited to only two sources. A pulsed triple ionization source [96] was 

developed that utilizes a nano-ESI emitter for analyte ion formation with an ESI emitter and 

either APCI or nano-ESI for reagent ion formation. This pulsed triple ionization source can 

be used for sequential ion/ion reactions, such as sequential charge inversions to increase 

analyte ion charge state, sequential proton-transfer charge inversion and ETD of 

phophopeptides, and sequential ETD and proton transfer ion/ion reactions for ubiquitin 

identification [96]. 

The mass analysis of ion/ion reaction products created in ion traps has primarily been 

accomplished by scanning the product ions out of the ion trap. The advantages of using the 

ion trap for both the ion/ion reaction vessel and mass analyzer are that the instrument 

hardware is kept simple by not adding additional mass analyzers and that the m/z range for 

ion traps can be extended by resonance ejection at low q-values [54, 105]. Despite these 

advantages, other mass analyzers capable of higher resolution and mass accuracy are 

attractive for analysis of ion/ion reaction product ions. Recently, a quadrupole-TOF 

instrument (QSTAR XL, Applied Biosystems/MDS Sciex) was modified to make the q2 

collision cell into an LIT for ion/ion reactions [75]. Proton transfer reactions, ETD, and 
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parallel ion parking have been demonstrated using the LIT-TOF. Other novel experiments 

using this LIT-TOF include combining ion/ion reactions with beam-type CID for MSn [106]. 

Another mass analyzer that has been used to analyze ETD product ions is the Orbitrap [99, 

107]. The ETD reactions are done in the LTQ portion of the hybrid LTQ-Orbitrap, and then 

the product ions are transferred to the Orbitrap for m/z analysis.  

 

Ion Mobility Spectrometry 

 Ion Mobility Spectrometry (IMS) is the study of how rapidly an ion moves through a 

buffer gas in the presence of a uniform electric field [108]. Ion mobility measurements are 

performed in a drift tube consisting of alternating electrodes and insulating spacers and 

containing a neutral buffer gas. The electrodes are connected with a resistor chain used to 

create a uniform electric field down the length of the drift tube by applying DC voltages to 

the front and back plates of the drift tube. The electric field accelerates the ions down the 

drift tube, while collisions with the buffer gas slow the ions, resulting in a constant drift 

velocity down the length of the drift tube. The mobility of the ions, K, is the ratio of the drift 

velocity, υD, to the electric field, E [108]. 

� �  �� 
�  (1) 

The injected ion drift tube technique, developed by Hasted and co-workers [109], is 

the injection of a packet of m/z selected ions that are created external to the drift tube. As the 

ion packet travels down the drift tube, ions with different mobilities will be separated. For 

polyatomic ions, the mobility is determined by the ion’s average collision cross section. Ions 

with smaller collision cross sections encounter fewer collisions with the buffer gas and travel 

faster through the drift cell, while ions with larger collision cross sections encounter more 
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collisions and travel more slowly through the drift cell. Thus, ion mobility is a method to 

separate ions based on differences in collision cross section [108]. 

 

Ion Mobility Calculations. Calculating the mobilities of ions traveling through the 

drift tube depends on several variables. Equation 1 does not take into account the 

experimental parameters of normal drift tube operation. The reduced mobility, K0, calculated 

using experimental parameters and adjusting the number density of the buffer gas to standard 

temperature and pressure, is given by 

�� �  �	


��  x ���.�
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��� (2) 

where L is the length of the drift tube, tD is the drift time (i.e. the time it takes for the ions to 

travel the length of the drift tube), V is the voltage drop across the drift tube, p is the pressure 

of the buffer gas in Torr, and T is the temperature [108]. 

 Another important parameter that defines the energy of the ions inside the drift tube is 

the ratio of the electric field to the buffer gas number density (E/N). At low E/N, the drift 

velocity is small compared to thermal velocity, and the ions are said to be within the low-

field limit. Conversely, when the mobility is dependent on E/N and the drift velocity is high 

compared to thermal velocity, the ions are in the high-field limit. When IMS measurements 

are done within the low field limit, the calculated mobility is independent of the electric field 

strength [108]. In the low-field limit, the mobility is calculated by 
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where m is the mass of the ion, mb is the mass of the buffer gas, z is the charge on the ion, T 

is the temperature, N is the buffer gas number density, and Ω+,-
��,�� is the average collision 

cross section. Combining equations 2 and 3, and solving for Ω+,-
��,�� gives the equation 
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used to calculate an ion’s average collision cross section from the measured drift time and 

other experimental parameters [108]. 

 

Protein IMS. There are a couple of characteristics of IMS that are useful for protein 

analysis. Ion mobility separates ions based on cross section instead of m/z, providing an 

additional means of separation for ions with similar m/z but different collision cross sections. 

For example, it has been shown that IMS of multiply charged protein fragment ions disperses 

the ions in time prior to MS analysis [110]. This technique reduces the spectral congestion of 

the multiply charged fragment ions, helping charge state determination and ion identification. 

It was also shown that protein fragment ions that have a different number of residues and the 

same charge (i.e. a charge state family) will fall on a diagonal line in the mobility spectrum 

[110], giving another method to help identify the charge state of multiply charged protein 

fragment ions.  

The other characteristic of IMS useful for protein analysis is the ability to determine 

an ion's average collision cross section from the IMS experimental parameters. The gas-

phase conformations of protein ions can be studied by measuring the collision cross section 

[108, 111, 112]. Unfolded protein ions will have a larger collision cross section than folded 

protein ions. Studies on cytochrome c ions in charge states from [M+20H]20+ to [M+3H]3+ 
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were conducted to calculate the collision cross sections. The higher charge states have larger 

collision cross sections, meaning the ions have more unfolded conformations. The low 

charge states have smaller collision cross sections, meaning the ions have more folded 

conformations. The [M+9H]9+ to [M+5H]5+ charge state have multiple resolvable peaks, 

corresponding to multiple different resolvable conformations [108]. These studies have also 

shown that the charge states with multiple conformations can be heated by increasing the 

drift tube injection energy. Heating the ions causes the more folded conformations to open up 

to the more unfolded conformations [108, 110]. The lowest three charge states in these 

studies, [M+5H]5+ to [M+3H]3+, were created by adding a neutral base to the desolvation 

region. Chapter 4 of this dissertation will discuss similar experiments investigating the gas-

phase conformations of cytochrome c at various charge states where ion/ion reactions are 

used to create the lower charge state ions. All of these studies are  

 

Ion Mobility Instrumentation. Injected ion drift tube instruments initially consisted 

of an ion source to generate ions, an MS to m/z select an ion, the drift tube, and a second MS 

with an ion detector. These instruments used several different ion sources including pulsed 

laser desorption [113], pulsed laser vaporization [114], MALDI [115], and ESI [112]. 

Clemmer and Valentine created an injection ion drift tube instrument that did not incorporate 

an MS prior to the drift tube [116]. This instrument had an ESI source, a desolvation region 

with the ability to add neutral base molecules for proton transfer ion/molecule reactions, a 

drift tube, and a quadrupole MS with ion detector. Chemical reactivity measurements, 

including H-D exchange of cytochrome c, collisional annealing and dissociation, and thermal 

annealing experiments were performed using this instrument [108, 116].  



www.manaraa.com

23 

 

Following those studies, Clemmer and co-workers have made several advances in 

IMS instrumentation, several of which have been duplicated by other research groups. An 

important improvement was the replacement of the quadrupole MS after the drift tube with a 

TOF [117]. The disbursement of ions by IMS occurs on the 1 to 10 ms time scale, while TOF 

m/z analysis occurs on the microsecond time scale. Therefore, several m/z spectra are taken 

across each mobility peak. This technique is referred to as nested drift (flight) time 

measurements [117]. An example of a nested drift (flight) time spectrum is shown in Figure 

7 [118]. Further advancements in IMS instrumentation have all been based on this initial 

ESI-IMS-TOF instrument. The addition of an ion trap before the drift tube as an ion 

accumulation/storage device improved the duty cycle of the IMS-TOF experiments [119-

121]. In previous instrument designs an ion gate was used to allow a short packet of ions 

from the continuous ESI source into the drift tube. With the addition of an ion trap, the 

mobility separation is started by pulsing the ions out of the ion trap into the drift tube. 

Another important advancement was the addition of a collision cell between the drift tube 

and TOF for mobility labeling experiments [118, 122]. In these experiments, ions are 

separated by IMS and are sequentially fragmented in the collision cell followed by TOF MS 

of the fragment ions. Each of the fragment ions appears at the same drift time as the parent 

ion in the nested drift (flight) time spectrum. Therefore, mobility labeling allows for parallel 

CID experiments [118].  

A different type of IMS instrument was recently made commercially available. This 

instrument, the SYNAPT HDMS made by Waters Corp., uses a traveling wave technology 

instead of the weak uniform electric field in traditional IMS [123, 124]. Experiments have 

been done to compare the traveling wave technology to traditional IMS. The mobility 
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characteristics of protein ions in the traveling wave instrument are similar to traditional IMS, 

but the relationship between drift time and mobility is different. Some calibrations of the 

traveling wave instrument are needed with ions of known cross section to be able to use the 

traveling wave technology for cross section measurements [124].  

More recent instrumentation advancements include the construction of IMS-IMS-

TOF [125, 126] and IMS-IMS-IMS-TOF [126] instruments that are the IMS analogs of 

MS/MS and MS/MS/MS experiments. In between the stages of IMS, the ions are mobility 

selected (instead of being m/z selected in an MS/MS experiment) and activated to either 

unfold protein ions or fragment the ions prior to the next stage of IMS [125, 126]. These 

instruments also incorporate ion funnels [127-129], developed by Smith and co-workers, at 

the end of each drift tube segment that re-focus the dispersed ion cloud near the end of the 

drift tube, increasing the sensitivity of IMS measurements[129]. An ion funnel placed before 

the drift tube is also used as an ion accumulation device in place of an ion trap [125, 126].  

 

Dissertation Objectives and Organization  

 This dissertation focuses on the continued development of MS instrumentation for 

novel biological applications, specifically, the development of instrumentation that integrates 

ion/ion reaction capabilities with IMS-q-TOF analysis. Chapter 2 is a manuscript that was 

accepted with revisions for publication in the Journal of the American Society for Mass 

Spectrometry. This manuscript describes the construction and performance of an LIT made 

with primarily commercially available components. The LIT has two ion source and ion/ion 

reaction capabilities in either dual polarity storage mode or transmission mode. Chapter 3 is a 

manuscript that is ready for submission to the Journal of the American Society for Mass 
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Spectrometry. This paper describes the construction and performance of an IT-IMS-q-TOF 

with three independent ion sources. This instrument is the first MS to combine ion/ion 

reaction capabilities with IMS-q-TOF analysis. Chapter 4 is also a manuscript ready for 

submission to the Journal of the American Society for Mass Spectrometry. This manuscript 

describes experiments performed on the IT-IMS-q-TOF instrument constructed in our lab. 

The gas phase conformation of cytochrome c ions in multiple different charge states is 

investigated using proton transfer ion/ion reactions and IMS. Chapter 5 summarizes the work 

presented in chapters 2, 3, and 4 and discusses future research directions. 
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Figure 1. “ECD spectrum of 15+ ions from cytochrome c.” [48] 
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Figure 2. “(a) Charge-reduced, tandem mass spectrum of [ubiquitin + Pt(CN)6 + 7H]5+. 
Ubiquitin cation injection time = 300 ms; Pt(CN)6

2- injection time = 200 ms; 
ubiquitin/Pt(CN)6 reaction time = 200 ms; activation for 300 ms at 89.0 kHz, 570 mV; PDCH 
anion injection time = 4 ms; PDCH/complex reaction time = 120 ms. Note: X = Pt(CN)6, and 
the asterisk (*) denotes a small neutral molecule loss (NH3 or H2O) from the ion. (b) Pre-
ion/ion MS/MS spectrum of the complex with the fragment ions labeled to shown the charge 
state of the fragments prior to charge reduction.” [63]  
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Figure 3. “The three electrodes of the quadrupole ion trap shown in open array.” [78] 
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Figure 4. “ The overall instrument configuration along with typical operating voltages and 
pressures.” [92] 
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Figure 5. “ Schematic portrayal of the experimental apparatus based on the ion path of a triple 
quadrupole mass spectrometer. The linear ion trap mass spectrometer was created using 
either q2 or Q3.” [91] 
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Figure 6. “Schematic of steps involved in the operation of the LTQ mass spectrometer for 
peptide sequence analysis by ETD. (A) Injection of multiply protonated peptide molecules 
(precursor ions) generated by ESI. (B) Application of a dc offset to move the precursor ions 
to the front section of the linear trap. (C) Injection of negatively charged reagent ions from 
the CI source into the center section of the linear trap. (D) Application of a supplementary 
dipolar broadband ac field to eject all ions except those within 3 mass-unit windows centered 
around the positively charged precursor ions and the negatively charged electron-donor 
reagent ions. (E) Removal of the dc potential well and application of a secondary RF voltage 
(100 V zero to peak, 600 kHz) to the end lens plates of the linear trap to allow positive and 
negative ion populations to mix and react. (F) Termination of ion/ion reactions by axial 
ejection of negatively charged reagent ions while retaining positive ions in the center section 
of the trap. This is followed by mass-selective, radial ejection of positively charged fragment 
ions to record the resulting MS/MS spectrum.” [64] 
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Figure 7. “ Two-dimensional contour plot of nested drift (flight) time data for a mixture of 
ions formed from electrosprayed [D-Ala2,3]methionine enkephalin. These data were recorded 
with no gas in the octopole collision cell. The contours are shown on a 10-point scale; this 
removes all features that contain fewer than 10 ion counts. The distribution includes a series 
of a-, b-, and y-type fragment ions that are formed upon high-energy injection into the drift 
tube (see text). The drift time axis has been normalized to a helium pressure of 2.70 Torr. 
Also shown (left) is the time-of-flight mass spectrum obtained by integrating the flight time 
data over the drift time range. (Data are plotted on a normalized intensity scale so that peak 
heights can be compared directly with the data in Figure 3.) The resolving power along the 
flight time axis is typically 200 (m/ m of a peak for a singly charged ion, where m is 
determined at half-maximum). Along the drift time axis, the resolving power (t/ t, where t 
is determined at half-maximum) is between 20 and 30, for all peaks.” [118] 
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Abstract 

 A linear ion trap (LIT) with electrospray ionization (ESI) for top-down protein 

analysis has been constructed. An independent atmospheric sampling glow discharge 

ionization (ASGDI) source produces reagent ions for ion/ion reactions. The device is also 

meant to enable a wide variety of ion/ion reaction studies. To reduce the instrument’s 

complexity and make it available for wide dissemination, only a few simple electronics 

components were custom built. The instrument functions as both a reaction vessel for gas-

phase ion/ion reactions, and a mass spectrometer using mass-selective axial ejection. Initial 

results demonstrate trapping efficiency of 70 to 90% and the ability to perform proton 

transfer reactions on intact protein ions, including dual polarity storage reactions, 

transmission mode reactions, and ion parking.  
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Introduction 

 Linear quadrupole ion traps (LITs)[1] have been a subject of recent interest, primarily 

because of their higher performance compared to 3d ion traps. Until recently, LITs were 

mainly used as ion storage devices or as collision cells for tandem mass spectrometry 

(MS/MS) preceding another type of mass analyzer (e.g. TOF[2, 3]  or FT-ICR[4, 5]). 

Compared to 3d traps, LITs offer higher injection efficiency ( <10% vs. almost 100%, 

respectively) and, because of their larger volume, higher ion storage capacity, while still 

maintaining the ability to perform MSN in a single device. More recently, two major 

innovations have led to widespread use of LITs as mass analyzers:  radial[6] or axial[7] 

ejection methods. These LIT’s still have high trapping efficiency and storage capacity, with 

the added benefits of mass analysis in a single device [8]. 

 For top-down protein analysis, linear and 3d ion traps cannot achieve the ultrahigh 

mass resolution and accuracy of FT-ICR[9] or Orbitrap instruments[10] necessary to resolve 

and unambiguously identify the isotopic distributions of highly multiply-charged ions. 

However, traps are well-suited to ion/ion reactions [11-13] like proton transfer to simplify the 

resulting complex, overlapping product ion spectra. Electron transfer dissociation (ETD)[11] 

ion/ion reactions also provide an alternative tool for protein ion dissociation. Ion/ion reaction 

experiments have been carried out in both types of LITs, and although ETD capabilities are 

becoming more readily available on commercial ion traps, proton transfer reaction 

capabilities are not yet commercially available. 

 In addition, many researchers would like greater control and flexibility over 

instrumental parameters than is typically available in commercial devices, especially for 



www.manaraa.com

43 

 

fundamental experiments and development of new methods. Here we discuss the 

development of an electrospray ionization (ESI)-linear ion trap mass spectrometer that has 

been constructed to enable complete control over all functions of the device. Mass scanning 

by radial ejection requires machining an exit slit and channel in at least one of  the 

quadrupole rods. To simplify measurement of mass spectra and allow the future addition of 

subsequent components, e.g., ion mobility and time of flight analysis, this device is operated 

using mass-selective axial ejection (MSAE) [14]. Commercially available components were 

used primarily to reduce the complexity of the development and allow wide dissemination of 

this device to other researchers. Initial performance characteristics for MS and gas phase 

ion/ion reactions are described, as well as future uses for this device in bioanalytical MS and 

as a source for ion mobility-TOF instruments. 

 McLuckey and co-workers have demonstrated the great value of commercial LITs 

with multiple pulsed ion sources, e.g. positive ESI for analyte ion formation plus negative 

ESI,[15-18] negative atmospheric pressure chemical ionization,[16, 18-21] or negative 

atmospheric sampling glow discharge ionization (ASGDI)[12, 22] for reagent ion formation. 

The present paper demonstrates the first work using an LIT with multiple continuous ion 

sources interfaced through a turning quadrupole that has proven valuable with 3d ion traps 

[23, 24]. 

 

Experimental 

 Cytochrome c, ubiquitin and trypsin were purchased from Sigma-Aldrich (St. Louis, 

MO) and were used without further purification. Solutions of proteins were prepared at 20 to 

30 µM in 1% aqueous acetic acid solutions for positive nano-ESI. Nano-ESI ionization 
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emitters were pulled from glass capillaries (1.5 mm o.d., 0.86 mm i.d.) with a micropipette 

puller (Model P-97, Sutter Instruments, Novato, CA). The nano-ESI voltage was +1 kV to 

+1.2 kV applied to a stainless steel wire through the back of the capillary. Perfluoro-1, 3-

dimethylcyclohexane (PDCH) was purchased from Sigma-Aldrich (St. Louis, MO) and was 

used as the reagent ion for proton transfer ion/ion reactions. The PDCH was ionized using an 

ASGDI source identical to that described by Zhao and co-workers [25].   

 

Instrumentation  

 Figure 1 shows a schematic diagram of the LIT with two ion sources: one ESI and 

one pulsed ASGDI source that are interfaced to the LIT through a quadrupole deflector. It 

should be noted that a third ion source could be added to the blank flange of the ion source 

cube shown in Figure 1. The LIT is a standard quadrupole mass filter modified to enable LIT 

functionality. Ions are detected with a conversion dynode/electron multiplier. Instrument 

control is via a commercially available ion trap controller and software. Figure 2 shows a 

schematic diagram of how the ion trap controller and software communicate with and control 

all components of the LIT. Details about each part of the instrument are given below. 

 

 Vacuum System.  The two ion sources and ion optics are housed in an 8” conflat 

cube, and the LIT is housed in an 8” conflat 5-way cross. One turbo pump (Turbo-V550 

MacroTorr, 550 l/s N2, Varian Inc., Palo Alto, CA) is attached to the top of the cube that 

houses the ion sources, and a second, identical turbo pump is attached to the 5-way cross that 

houses the LIT. The turbo pump on the source cube is backed by a SD-301 mechanical pump 

(Varian Inc., Palo Alto, CA), and the turbo pump on the LIT 5-way cross is backed by an 
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E2M40 mechanical pump (BOC Edwards, Wilmington, MA). The chamber pressure is 

measured by a Micro-Ion Gauge (Helix Technology, Longmont, CO). The baseline pressure 

of the system is ~5 x 10-7 mbar. 

 

 Ion Sources and Ion Optics.  Both ion sources have been described [24, 25]. Typical 

pressures in the ion source interface regions (i.e. behind the first 254 µm aperture to 

atmosphere and before the second 381 µm aperture to the high vacuum region) are 0.90 mbar 

and 0.80 mbar for the nano-ESI and ASGDI source, respectively. Each is pumped by a 

separate E2M40 mechanical pump. The pulsed ASGDI was initiated via a -400 V high 

voltage pulse supplied via a power supply (Model 556, Ortec, Oak Ridge, TN) through a fast 

pulser (Model PVX4150, Directed Energy Inc., Fort Collins, CO). Voltages for the interfaces 

and the first three lenses are supplied via 9 output power supplies (Model TD9500, Spectrum 

Solutions, Russelton, PA). The voltages on the quadrupole deflector (Model 81989, Extrel 

CMS, Pittsburgh, PA) and on the three lenses between the quadrupole deflector and the LIT 

are supplied via additional 9 output power supplies, but are switched using a computer-

controlled fast relay switch to enable ions from each source to be focused separately to the 

LIT as required. The ASGDI source is the default ion source. A single TTL trigger is used to 

switch the optics to allow ESI ions to enter the trap, and a second TTL trigger is used to pulse 

on the ASGDI discharge. 

 

 Linear Ion Trap.  The LIT is a commercially available tri-filter quadrupole in a 

collision cell housing (r0 = 9.5 mm, Extrel CMS, Pittsburgh, PA). The rf trapping voltage is 

supplied by a standard Extrel 300 W rf only power supply providing 3600 V0-p (pole to 
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ground) at 880 kHz. In order to operate the quadrupole as an LIT, and perform MSAE [14] 

and MS/MS experiments, modifications were made to the quadrupole and rf electronics. 

 As described by Paul,[26] additional waveforms can be added to quadrupole rods to 

resonantly excite ions. Douglas and coworkers [2, 3] add dipolar excitation across a pair of 

opposite quadrupole rods to excite trapped ions for collision-induced dissociation and 

MS/MS. We implemented dipolar excitation by cutting the connections between one set of 

rods and add an extra rf post and hole through the collision cell housing. To add the dipolar 

excitation voltage to the rf trapping voltage on one set of rods, a toroidal transformer was 

used. The toroid (Model 5977003801, Fair-Rite, Wallkill, NY) was housed in a metal casing 

outside the vacuum chamber. The turn ratio between the primary and secondary was 1:1 

using 16 turns of 22 gauge magnet wire (Belden Corporation, Chicago, IL). One of the 

outputs of the rf power supply was connected to the center tap of the secondary. The outputs 

of the secondary are then fed to the quadrupole rods through rf feedthroughs (Model 810998, 

Extrel CMS, Pittsburgh, PA). One side of the primary was grounded, and the other was 

connected to the waveform generator.  

The MSAE and MS/MS waveforms were generated from the ion trap controller. The 

original 5 V0-p was amplified to 35.5 V0-p using a custom amplifier (PA09 op-amp, Apex 

Microtechnology, Tucson, AZ) and applied to the primary of the transformer through a 50 Ω, 

51 W resistor. 

Two additional modifications to the quadrupole were required for effective trapping 

and m/z analysis. The post-filter was removed, and the pre-filter was shorted to the center 

quad section. The center rod section is the only section that is aligned with high precision. 

Therefore, removing the post-filter ensures that the fringe fields necessary for MSAE occur 
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between the optimally-aligned center rod section and the exit aperture IQ2. Shorting the front 

and center sections together applies the full rf voltage to the entire trapping length and 

minimizes ion loss (from unequal potential well depths) as ions are trapped. This 

modification is especially important during charge reduction ion/ion reactions. As ions with a 

lower z –and correspondingly higher m/z—are formed, they will reside in increasingly 

shallower potential wells. Without the full rf voltage on both the center and the pre-filter 

section, ions at high m/z are no longer trapped and are lost. 

DC voltages (0-4 V) from an Argos ion trap controller (described in detail below) are 

amplified to ± 200 V (PA97 op-amp, Apex Microtechnology, Tucson, AZ), and controlled in 

the scan function with the ion trap controller. These dc voltages are applied to the entrance 

and exit lenses (IQ1, IQ2) and LIT rods (Q). The IQ1 and IQ2 lenses are 8 mm diameter and 

both are covered with nickel mesh (90% transparency, 70 lines per inch, InterNet Inc., 

Anoka, MN) on the interior side of the lenses. The distance from the IQ1 lens to the end of 

the quadrupole rods is ~5 mm. The IQ2 lens was modified to make the distance from the lens 

to the end of the quadrupole rods ~2 mm. 

In order to fully resonate the rf power supply after adding the toroidal transformer and 

changing the arrangement of the quad sections, the overall capacitance of the load was 

reduced by the following measures. 1) The original rf cable between the power supply and 

the transformer was shortened by 53 cm, from 166.3 cm to 113.3 cm. 2)  the magnet wire 

used in the toroidal transformer was covered with Teflon tubing (1.7 mm O.D., 1.1 mm I.D.). 

3) A 3 pF capacitor in the rf power supply near the output on both the toroid and non-toroid 

sides was removed. 4) The tap of the rf coil was moved to remove 2.25 turns on the toroid 
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side and 1 turn on the non-toroid side. By performing these steps, the power supply could 

generate nearly the maximum original rf voltage, as read by the internal feedback circuit. 

To make sure similar rf voltages were applied to each of the quadrupole rods, two 

duplicate rf detector circuits identical to those used by the Extrel power supply were built. 

These devices convert the rf voltage to a current that can be read with a digital multimeter. 

Using this method, the two sides of the rf output could be tuned to be within 1.99 ± 0.25% of 

each other, limited by the accuracy of the digital multimeter. 

 The nitrogen buffer gas pressure in the LIT is adjusted using a variable leak valve 

(Model 203, Helix Technology, Longmont, CO) and measured by the pressure in the main 

chamber using the Micro-Ion Gauge. During a typical experiment, the chamber pressure is 

maintained at ~1.3x10-4 mbar with both sources open and nitrogen gas added to the LIT. Of 

course, the pressure inside the LIT is higher than that measured by the ion gauge. From the 

sizes of the IQ1 and IQ2 lenses (8 mm diameter), the 90% mesh covering the lenses, the 

measured pressure in the vacuum chamber (1.3x10-4 mbar), and the pumping speed (550 l/s), 

the pressure inside the LIT is estimated to be 5x10-3 mbar, assuming effusive flow out of IQ1 

and IQ2. 

 Mass spectra are acquired using MSAE by ramping the rf voltage while applying a 

dipolar resonance excitation frequency and a small, constant, repulsive voltage to IQ2 

(typically +1 to +3 V for positive ions), while the dc voltage on the LIT rods is kept at 

ground. Ejected ions are detected with an electron multiplier with conversion dynode (402A-

H, Detector Technology Inc., Palmer, MA). Scans were measured only in the forward 

direction, from low m/z to high m/z.  
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 Modifications for Ion/Ion Reactions with Dual Polarity Trapping.  In order to 

perform dual polarity storage mode ion/ion reactions, and store both positive and negative 

ions simultaneously, AC voltages are applied to IQ1 and IQ2 during PDCH injection and 

subsequent reaction time [11]. This axial trapping voltage is generated via a multifunction PC 

card (Model 6251, National Instruments, Austin TX) with custom software written in 

Labview 8.0. The frequency and amplitude are set in the software—and are, therefore, fixed 

during an experiment—and the waveform is switched on and off via a TTL trigger (1 µs 

delay). The initial 0-5 V0-p sine wave is amplified via a custom amplifier (PA90, Apex 

Microtechnology, Tucson, AZ) up to 175 V0-p and split into two 180° out-of-phase signals. 

The ac voltages are added to the dc voltage for IQ1 and IQ2 using a simple mixer circuit. 

Typically, the waveform is applied at 100 kHz, with an amplitude of ~50 V0-p, empirically 

determined to minimize ion loss during the reaction period. The amplitude and frequency of 

this waveform are lower than those used by McLuckey and coworkers [17].  

In the first scan function segment of a dual polarity trapping ion/ion reaction, three 

processes are done simultaneously—the dc potentials on the IQ1 and IQ2 lenses are set to 0V 

(the same potential as the quadrupole rods), the axial trapping waveform is turned on, and the 

ASGDI source is pulsed on. In the second segment, the ASGDI source is turned off, and the 

analyte and reagent ions are allowed to react. To end the reaction, the axial trapping 

waveform is turned off and the dc potentials on the IQ1 and IQ2 lenses are, simultaneously, 

set to repel (i.e., trap) the positive analyte ions, while excess negative reagent ions are ejected 

out both ends of the LIT.  
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Ion/Ion Reactions in Transmission Mode and Ion Parking.  Another method for 

enabling ion/ion reactions, transmission mode reactions, has been described previously [15, 

19]. Transmission mode reactions are enabled by trapping the analyte ions using small 

repulsive dc voltages (typically 2 to 5 V) on the IQ1 and IQ2 lenses and passing the reagent 

ions, continuously generated by the ASGDI source during the reaction time, through the 

population of trapped analyte ions. Any unreacted reagent ions pass completely through the 

LIT and are lost. Ending the transmission mode reactions simply requires turning off the 

ASGDI source, thus turning off the reagent ion beam. The reaction product ions remain 

trapped in the LIT because they are the same polarity as the unreacted analyte ions. 

Ion/ion reactions carried out using this method do not require the use of the axial 

trapping waveform, and there is only one scan segment for the reaction period. Therefore, the 

scan function for transmission mode ion-ion reactions is simpler than that for dual polarity 

trapping ion-ion reactions.  Additionally, the electronics required to add the dual polarity 

trapping waveform to the containment lenses are not required, making the LIT hardware for 

transmission mode reactions much simpler than that for dual polarity storage mode reactions. 

Ion parking [27] is a technique that was developed by McLuckey and co-workers in 

which the rate of reaction for ions at a single m/z value [27] or multiple m/z values [28, 29] 

are selectively reduced. Increasing the relative velocity of reactant ions, which reduces the 

ion/ion reaction capture cross section, during an exothermic ion/ion reaction decreases the 

rate of reaction between those ions [27]. To enable ion parking, a low amplitude auxiliary 

sine wave (~1V0-p, ~ 40 kHz for the ions chosen here) is added to the x-rods of the LIT 

during the ion/ion reaction period. The auxiliary sine wave resonantly excites a particular 

product ion formed during the ion/ion reaction. The frequency and amplitude of the sine 
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wave are chosen so that the ion being parked is excited enough to inhibit the reaction rate but 

not so much that it is ejected from the LIT. These values are fine-tuned empirically to 

produce the desired results.  As the reaction proceeds and the ion chosen to be parked is 

formed, it is resonantly excited by the applied auxiliary sine wave. The velocity of the 

excited ion relative to the reagent anion increases, thereby reducing its ion/ion reaction rate 

and minimizing further reaction. For the proton transfer ion/ion reactions on intact protein 

ions studied here, the result of an ion parking experiment is the concentration of most of the 

ions into a single charge state below that of the original ions.  

 

 Electronics.  An Argos ion trap controller (Griffin Analytical Technology, West 

Lafayette, IN) controls the entire instrument and acquires data. The scan function is 

generated by the Argos software. TTL pulses (“relays”) trigger the ASGDI source, switch the 

fast relay switch to enable injection of oppositely-charged ions, and toggle on the ion/ion 

trapping voltage. The two waveform outputs control the rf level (0-10 V control 0-3600 V0-p 

of rf) and generate MS/MS waveforms, respectively. Different from previous versions of the 

Argos software, this version provides time dependent dc voltages (0-4 V “registers”) that 

control the voltages applied to IQ1, IQ2, and the LIT rods.  

 Data are acquired using the Argos data input (at a 250 kHz sampling rate), but as a 

result, the data acquisition time is limited to 250 ms or less. Primarily, this limits the ability 

to perform slow mass scans over a wide mass range.   
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Results and Discussion 

 LIT Performance.  Initial characterization of the LIT includes determination of 

trapping efficiency, ion capacity, mass analysis efficiency, and measurement of mass 

accuracy. To determine the trapping efficiency, ions are gated into the trap for a specified 

time, cooled, and then dumped to the detector (in a non-mass selective manner) by dropping 

the IQ2 voltage. The response from the trapped ions is then compared to the response 

acquired during operation of the quadrupole as an rf-only ion guide for the same time as the 

trap fill time at the same rf level.   

Table 2 shows trapping efficiencies at 4 different fill times for positive ions of 

cytochrome c and trypsin generated by ESI. Efficiencies average 83% with a range from 68 

to 92%. These values agree with those determined previously from other LIT instruments [6, 

7]. 

 Figure 3 shows a plot of total ion current (TIC) vs. LIT fill time for cytochrome c that 

is used to measure the ion capacity of the LIT. The response is nearly linear from 5 to 40 ms, 

after which the signal levels off. The ion current on IQ1 was then measured—with all LIT 

and ion detector voltages turned off—using a picoammeter (Model 6485, Keithley 

Instruments, Cleveland, OH) to determine the real number of ions delivered to the trap. It 

was assumed that the rate of ions that strike the wires of the Ni mesh covering IQ1, after 

accounting for the 90% transmission, approximates the rate at which ions are delivered to the 

LIT during the fill step of a trapping experiment. Using the average measured ion current 

from the IQ1 Ni mesh (7.97 pA), the correction for the 90% transmission, the fill time at 

which the response levels off (40 ms), the measured trapping efficiency (83%), and the 

average charge state of the cytochrome c ions used for the measurement (+8.5), it was 
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determined that approximately 1.9x106 ions can be trapped in the LIT. The maximum total 

charge in the LIT is thus ~ 1.6x107 charges. In order to avoid space charge effects, the LIT is 

not filled to this capacity during normal operation. 

  

 Mass Spectra.  A typical protein mass spectrum taken using MSAE is shown in 

Figure 4. The inset of Figure 4 shows the peak shape for the +9 charge state of cytochrome c. 

This peak has a full-width at half maximum (fwhm) of 1.11 Th, corresponding to a resolution 

of 1230. The measured fwhm from the LIT is about 1.4x larger than the calculated width of 

the isotopic envelope (0.77 Th, fwhm). Of course, resolving the isotopic distribution of this 

peak requires resolution in excess of ~18000 (50% valley). 

 Table 1 shows the trapping voltages and ejection conditions used to take the 

spectrum shown in Figure 4. These operating conditions are typical for mass spectra taken 

with the LIT. The spectrum in Figure 4 shows adduct or impurity peaks at 54 Da, 90 Da, and 

130 Da above each protein peak. The scan function used to generate this spectrum includes a 

heating ramp in which a 1.9    V0-p, 150 kHz sine wave is applied to the x-rods while the rf 

amplitude is ramped to bring the protein ions into resonance with the applied sine wave. Thus 

the ions are heated, and the adducts/impurities are dissociated. Without this heating ramp, the 

overall protein peak is very wide, encompassing the protein and all the adduct/impurity ions 

into a single wide peak. The adduct/impurity peaks could not be totally eliminated without 

severely reducing the intensity of the protein peak. It should also be noted that these same 

adduct peaks are seen from the same protein samples on another home-built MS in our lab 

[25]. 
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The mass analysis efficiency is measured using a similar procedure as the trapping 

efficiency measurement. Protein ions are gated into the LIT for a specified time, cooled, and 

non-mass selectively emptied to the detector by dropping the potential on IQ2. In a second 

experiment, protein ions are gated into the LIT for the same specified time—ensuring that the 

number of ions inside the trap is approximately the same for both experiments—cooled, and 

mass analyzed using MSAE. The ratio of the TIC of the ions ejected under MSAE conditions 

to the TIC of all the ions trapped (measured by non-mass selectively ejecting ions) yields an 

average measured MSAE efficiency of 7.4±2.2%. Using the average measured MSAE 

efficiency and the overall length of the LIT (18.7 cm), it was calculated that the extraction 

region is 18.7 x 0.074 = 1.4 cm long. The measured efficiency and extraction region length 

are less than the results obtained by Hager [7] at similar LIT pressure. Conversely, the 

measured MSAE efficiency is slightly higher than recent results obtained by Douglas and co-

workers [30]. Our measured efficiency may be higher due to higher pressure in the LIT and 

the lower spectral resolution than in the results recorded by Douglas.  

Table 2 shows MSAE efficiency measurements for different fill times of cytochrome 

c and trypsin. The data shows that as fill time increases the MSAE efficiency decreases. 

Space charge effects may degrade the MSAE efficiency at longer fill times. 

Mass accuracy was determined by spraying a 50:50 mixture of cytochrome c  and 

ubiquitin. The peak maxima for [M+9H]9+ and [M+8H]8+ of the cytochrome c ions (m/z ~ 

1360 and 1530) were used to calibrate the m/z axis and the m/z at the peak maxima of 

[M+7H]7+ and [M+6H]6+ ions of ubiquitin (m/z ~ 1224 and 1429) were measured. Measured 

mass accuracies range from 900 to 2200 ppm. The accuracy limitations are likely due to 

voltage stability for the rf trapping voltage, resonance excitation voltage, and/or IQ2 dc 
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voltage. The use of calibrant ions in a m/z window that span that of the analyte may also 

improve mass measurement accuracy.    

To illustrate the performance of the LIT as a mass analyzer at moderate m/z values, a 

spectrum of the PDCH reagent anions from the glow discharge source is shown in Figure 5a. 

These ions are a mixture of [M-F]- and M-. [31]. The inset shows the peak shape and 

resolution for the [M-F]- ion. The 13C isotope peak is cleanly resolved from the main peak at 

m/z 381. The nominal resolution value m/∆m = ~1080 at fwhm. 

It should be noted that nonlinear resonance ejection peaks can be seen under certain 

conditions. These “ghost peaks” [32] occur at a qz value of 0.64 (β=0.5 or 220 kHz in this 

system) consistent with octopolar field ejection [33]. Use of resonance ejection frequencies 

near this nonlinear resonance can produce asymmetric or split peaks. Therefore, the 

resonance ejection frequency is selected to avoid this nonlinear resonance value.  

  

 Dual Polarity Trapping Mode Ion/Ion Reactions.  The application of the dual 

polarity storage mode waveform used for ion/ion reactions is similar to that described 

previously [11]. The dual polarity storage mode proton transfer ion/ion reaction scan function 

consists of the following steps: filling the trap with protein cations, a cooling segment, a 

heating ramp to eliminate adduct peaks from the protein, another cooling segment, a PDCH 

fill segment, an additional reaction segment, a final cooling segment, and mass analysis.  

The results of such a dual polarity storage mode reaction between trypsin positive 

ions and negative PDCH ions are shown in Figure 5. The mass spectrum of the trypsin ions 

formed directly from ESI is shown in Figure 5b. The main ions observed under these sample 

and source conditions are the [M+11H]11+ and [M+10H]10+ charge states, with small amounts 
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of the [M+9H]9+ and [M+12H]12+ charge states. In the subsequent parts of Figure 5, the LIT 

is also filled with negative ions from PDCH (Figure 5a) for either 15 or 20 ms. The PDCH 

fill step is followed by a period of dual polarity storage where the positive trypsin ions and 

negative PDCH ions are allowed to react further. The amplitude of the LIT rf voltage during 

the ion/ion reaction periods is set at 360 V0-p, leaving the most abundant PDCH ion ([M-F]-) 

at q=0.74. This amplitude rf was empirically chosen to maximize the amount of high mass 

product ions that are trapped while still trapping the PDCH reagent ion. The dual polarity 

trapping waveform added to IQ1 and IQ2 during the ion/ion reaction periods is a 100 kHz 

sine wave with an amplitude of 50 V0-p.  

A PDCH fill time of 15 ms and additional reaction time of 100 ms converts the 

trypsin ions shown in Figure 5a to the [M+3H]3+, [M+2H]2+, and [M+H]+ charge states 

(Figure 5c). Continuing the reaction for times in excess of 100 ms does not result in further 

conversion of trypsin ions to lower charge states (data not shown). Thus, all the PDCH 

anions that were trapped in a 15 ms fill time have been reacted after a 100 ms reaction. 

Figure 5d results when this dual polarity storage mode reaction experiment is 

repeated with a PDCH fill time of 20 ms and an additional reaction time of 100 ms. The 

multiply charged trypsin ions from Figure 5b are converted to primarily [M+H]+, m/z = 

~24,000. The fwhm of the peak for this ion is 673 Th, and the resolution is 34. At this time, 

the [M+H]+ ion of trypsin is the highest m/z ion created and ejected from this LIT. To 

achieve the mass range extension required to eject the [M+H]+ ion of trypsin, a 35 kHz sine 

wave was added to the LIT rods during the mass scan. The amplitude of this resonant 

excitation sine wave was ramped from 8.9 V0-p to 24.8 V0-p. The dc voltage on the IQ2 lens 

was set to be 2.5 V relative to the LIT rod bias (0 V dc).  
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 Transmission Mode Ion/Ion Reactions.  Results of proton transfer ion/ion reactions 

of multiply charged ubiquitin cations with PDCH anions are shown in Figure 6. During the 

transmission mode reaction period, the amplitude of the LIT rf voltage is set at 360 V0-p, 

leaving the most abundant PDCH ion ([M-F]-) at q=0.74, an equivalent value to dual polarity 

trapping mode experiments. Also, injecting reagent anions at high q-values results in the 

greatest spatial overlap between the analyte and reagent ions, maximizing the ion/ion 

reaction rate [15, 19]. The dc voltages on IQ1 and IQ2 were set at 3 V repulsive relative to 

the rod dc bias (0 V).  

Figure 6a shows the mass spectrum of ubiquitin obtained directly from ESI. The 

solution and ESI source conditions yield ubiquitin ions primarily in the [M+6H]6+ to 

[M+8H]8+ charge states. As shown in Figure 6b, transmission mode reaction with PDCH 

anions for 40 ms converts approximately half these ions to the [M+3H]3+ to [M+5H]5+ charge 

states, while the other half of the ions are lost. Extending the reaction period to 70 ms 

converts the ions to roughly equal amounts of [M+H]+ and [M+2H]2+ (Figure 6c). In the 

latter experiment, continuing the reaction long enough to reduce the ions to [M+H]+ and 

[M+2H]2+ results in peaks that are only ~10% as high as those for the original spectrum. 

Most of this is due to ion losses from the ion/ion reaction, but some is attributed to loss in 

detector response for ions with lower charge. The same effect is seen in Figure 5 for trypsin 

in dual polarity storage mode. Others also report ion losses of similar magnitude as a 

consequence of ion/ion reactions, in either 3d ion traps or LITs [15, 27]. 

 

 Ion Parking.  Ion parking should alleviate some of the ion losses during proton 

transfer reactions. Results from such an experiment involving cytochrome c ions are shown 
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in Figure 7. Here the vertical scales have been kept constant so the signals can be compared 

more easily. The pre-ion/ion reaction spectrum of cytochrome c (Figure 7a) shows mostly the 

[M+9H]9+ and [M+8H]8+ charge states. A transmission mode reaction enabled by passing 

PDCH anions through the population of trapped cytochrome c ions for 20 ms yields a variety 

of peaks from [M+7H]7+ to [M+4H]4+, all with low abundances (Figure 7b). In Figure 7c, a 

waveform selected to excite the [M+7H]7+ ion (1.8 V0-p and 42 kHz) is applied to the x-rods 

during the transmission mode reaction period. With ion parking enabled, most of the 

resulting product ions remain in the [M+7H]7+ charge state; about 20% react further to form 

[M+6H]6+ and a small amount of  [M+5H]5+. The signal in the [M+7H]7+ charge state after 

the reaction with ion parking (Figure 7c) is about half of the total ion signal present in the 

[M+9H]9+ and [M+8H]8+ charge states created directly from the ESI source (Figure 7a), 

which is a much less severe compromise of signal than that shown for ion/ion reactions 

without ion parking in Figures 5 and 6. 

 

Conclusion 

A research-grade LIT with multiple ion sources was designed and constructed using 

primarily commercially available components. Preliminary experiments show that its 

trapping efficiency is similar to that of commercial LITs and its performance as a mass 

spectrometer is good compared to the theoretical peak width of the cytochrome c charge 

states. Ion/ion reaction capabilities in both dual polarity storage mode and transmission mode 

were also demonstrated. The device operates under versatile computer control that should 

facilitate application to various schemes for ion/ion reactions and other ways to manipulate 

ions.   
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Future plans for this instrument include: enabling top-down protein analysis, 

including both collision induced dissociation followed by proton transfer ion/ion reactions as 

well as electron transfer dissociation (ETD) [11]. A second plan for this instrument is writing 

a data acquisition program in Labview 8.0 to enable data acquisition with the National 

Instruments multifunction PC card mentioned earlier. This modification should allow 

measurement times longer than the 250 ms limit of the Argos data acquisition system. 

Another future use for this instrument is to replace the 3d ion trap as the source for an ion 

mobility-time-of-flight (IMS-TOF) device that was built in our lab [25]. 
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Table 1. Typical LIT conditions used to trap and eject ions over 1100-1800 m/z 

 range. 

 
Scan Step IQ1 

(V) 
IQ2 
(V) 

RF 
Amplitude         

(V0-p) 

Resonance 
Amplitude 

(V0-p) 

Resonance 
Frequency 

(kHz) 

Scan Rate 
(Da/s) 

Fill (10-20 ms) -10 10 360 -- -- -- 
Cool (30 ms) 10 10 360 -- -- -- 
Heating Ramp 

(100 ms) 
10 10 540 to 

1260 
1.9 150  

(q=0.46) 
12,300  

Cool (30 ms) 10 10 1080 -- -- -- 
Mass Scan (250 

ms) 
10 2 1080 to 

1800 
2.8 to 3.7 275 

(q=0.75) 
3000  

 

 

 

 

Table 2. Trapping efficiency and MSAE efficiency at various ion fill times for cytochrome c 

and trypsin ions.  Uncertainties represent the standard deviations of four to six such 

measurements.  

 
Fill Time (ms) Trapping Efficiency (%) MSAE Efficiency (%) 

5 68.9 ± 11.1 9.6 ± 1.8 

10 85.3 ± 4.6 7.7 ± 1.6 

15 84.9 ± 8.2 6.4 ± 1.7 

20 92.0 ± 4.8 5.1 ± 0.86 
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Figure 1.  Instrument hardware schematic drawn to scale. 
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Figure 2.  Instrument communication and control diagram. 
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Figure 3. Plot of total ion current vs fill time used to measure the ion capacity of the LIT. 
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Figure 4.  Cytochrome c mass spectrum.  A heating ramp (100 ms, 540 to  

1260 V0-p rf, 1.9 V0-p, 150 kHz sine wave) reduced the intensity of the adduct peaks  

that are visible at 54 Da, 90 Da, and 130 Da above each protein peak. 
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Figure 5.  Mass spectra taken from dual polarity storage mode proton transfer ion/ion 

reactions of intact protein trypsin.  (a) Negative ion mode spectrum of the proton transfer 

reagent ion, PDCH.  (b) Pre-ion/ion reaction spectrum of trypsin ions generated directly from 

ESI.  (c) Post-ion/ion reaction spectrum of ions shown in (a) and (b) with a 15 ms PDCH fill 

and 100 ms reaction. (d) Post-ion/ion reaction spectrum of ions shown in (a) and (b) with a 

20 ms PDCH fill and 100 ms reaction.   
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Figure 6.  Mass spectra taken from transmission mode proton transfer ion/ion reactions of 

intact protein ubiquitin.  (a) Pre-ion/ion reaction spectrum of ubiquitin ions generated directly 

from ESI.  (b) Mass spectrum resulting from a transmission mode proton transfer ion/ion 

reaction enabled by passing PDCH anions through the population of trapped ubiquitin ions 

from (a) for 40 ms. (c) Mass spectrum resulting from a transmission mode proton transfer 

ion/ion reaction enabled by passing PDCH anions through the population of trapped ubiquitin 

ions from (a) for 70 ms.  
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Figure 7. Mass spectra taken from an ion parking experiment during a transmission mode 

proton transfer ion/ion reaction. (a) Pre-ion/ion reaction spectrum of cytochrome c ions 

generated directly from ESI. (b) Mass spectrum resulting from a transmission mode proton 

transfer ion/ion reaction enabled by passing PDCH anions through the population of trapped 

cytochrome c from (a) for 20 ms. (c) Mass spectrum resulting from a transmission mode 

proton transfer ion/ion reaction enabled by passing PDCH anions through the population of 

trapped cytochrome c ion from (a) for 20 ms, during which a 1.8 V0-p, 42 kHz sine wave was 

added to the x-rods of the LIT, enabling the [M+7H]7+ ion to be “parked”.  
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Abstract 

The instrument described here combines the capabilities of ion-ion reactions with ion 

mobility (IM) and time-of-flight (TOF) measurements for conformation studies and top-

down analysis of large biomolecules.  Ubiquitin ions from either of two electrospray 

ionization (ESI) sources are combined in a 3D ion trap with negative ions from atmospheric 

sampling glow discharge ionization (ASGDI).  The ion-ion reaction products are then 

separated by IM and analyzed via a TOF mass analyzer. Alternatively, protein ions are 

fragmented by collision-induced dissociation (CID) in the 3D ion trap, followed by ion-ion 
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reactions to reduce the charge states of the CID product ions, thus simplifying the tandem 

mass spectrum.  Instrument characteristics and the use of a new ion trap controller and 

software modifications to control the entire instrument are described.  

 

Introduction 

 Despite the widespread use of  mass spectrometry (MS) for biological analyses, 

further improvements in MS instrumentation are desirable, particularly in areas like 

proteomics [1] and  characterization of large macromolecular complexes [2, 3]. These 

instrumentation improvements provide analytical capabilities that enable new biological 

studies not envisioned previously.   

 Ion mobility (IM) [4, 5] has become a very useful technique for analysis of biological 

ions in the gas phase.  IM provides information about ion size and structure [6], as it  rapidly 

separates ions based on collision cross-section, rather than just m/z ratio. The use of IM to 

disperse a mixture of ions in time prior to analysis via a time-of-flight (TOF) MS, i.e, nested 

drift (flight) time measurements, is an important recent advance. These experiments [7] were 

pioneered by Clemmer and coworkers in the mid-1990’s and have now been used by several 

other groups [8, 9]. In a series of instrumental designs, the Clemmer group has made various 

modifications to the initial ESI-IM-TOF, including the insertion of a collision cell between 

the IM drift tube and the TOF for mobility labeling experiments [10, 11], and  the addition of 

an ion trap prior to the mobility drift tube to improve the duty cycle from the continuous ESI 

source [12, 13].   One publication demonstrated MS/MS capabilities with an ion trap prior to 

IM-TOF [14], but not with the entire instrument under computer control.  Therefore, only 

relatively simple experiments were possible. 
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 IM has been used to analyze the products of ion-molecule reactions [15] including 

proton transfer [16, 17], H/D exchange [18], and salvation [19-22]. In these studies the 

desired reactions take place either in the atmospheric pressure ion source interface region or 

in the drift tube itself.  Thus, only long reaction times and certain reagent ions can be used.  

In addition, performing reactions in the IM cell can make spectral interpretation difficult 

because the fragmentation and chemistry occur at the same time. In the current experiments, 

the ion/ion reaction chemistry is decoupled from the subsequent mobility and mass analysis.  

Therefore, the reaction time and chemistry of reagent ions are controlled more effectively, 

including a wider selection of reagent ions from independent ion sources. 

Gas-phase ion-ion reactions provide another dimension for gas-phase bioanalysis.  

Pioneering work by Smith and coworkers [23, 24] were followed by a continuing series of 

experiments by McLuckey’s group [25]. Ion-ion reactions are rapid, versatile, and can be 

controlled via various ion manipulation schemes.  To date, the most common type of reaction 

has been proton-transfer to manipulate the charge states of multiply-charged ions [26] and 

simplify complex MS/MS spectra [27, 28]. Use of product ions in low charge states can 

improve mass accuracy and resolution, especially with low resolution mass analyzers.  Other 

useful reactions include electron transfer,  most notably electron transfer dissociation (ETD) 

[29-31],  electron capture dissociation (ECD) [32, 33], and complex formation [34, 35].  Ion-

ion reactions can also be used to measure chemical properties of gas-phase biomolecules. 

Various instruments specifically for ion-ion reactions include two [29, 36-38], three[39], or 

four [40] independent ion sources arranged around an ion trap, although use of pulsed 

sources and a single ion extraction system is also possible [41, 42].  
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 Here, we describe the first instrument to include capabilities for both ion-ion 

reactions and IM-TOF-MS measurements.  Initial experiments and instrument characteristics 

are described, including use of a new ion trap controller and software to control the entire 

instrument. 

 

Experimental 

Bovine ubiquitin (Sigma-Aldrich, St. Louis, MO) was used without further 

purification.  Protein solutions were 20 to 30 µM in 1% aqueous acetic acid for positive ion 

mode. Nano-ESI emitters were pulled from glass capillaries (1.5 mm o.d., 0.86 mm i.d.) by a 

micropipette puller (P-97, Sutter Instruments, Novato, CA). Nano-ESI was performed by 

applying +1 kV to +1.2 kV to the protein solution via a stainless steel wire through the back 

of the sample capillary.  Negative ions from perfluoro-1,3-dimethylcyclohexane (PDCH, 

Sigma-Aldrich , St. Louis, MO) were used as the proton acceptor reagent. 

 

Instrumentation 

General. The instrument is shown to scale in Figure 1.  It contains three independent 

ion sources:  two for ESI and one for ASGDI [43].  Ions from these sources are stored in the 

3D quadrupole IT for reaction.  The products are separated by the IM drift tube, followed by 

a quadrupole-time-of-flight mass spectrometer (q-TOF).   

The vacuum chamber consists of an 8” Conflat cube, which houses the three ion 

sources, ion optics, and turning quadrupole deflector (TQ, Extrel, Pittsburgh, PA).  The cube 

is evacuated by a turbo pump (Turbo-V550 MacroTorr, 550 l/s N2, Varian Inc., Palo Alto, 

CA) backed by a mechanical pump (SD-30, Varian, Palo Alto, CA) and is attached to a 
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custom built rectangular chamber (304 stainless steel, 35.6 cm wide ×76.2 cm long × 33.0 cm 

high) that also houses the IT, drift tube, and quadrupole collision cell. The TOF is in an 

aluminum housing (8.90 cm × 25.4 cm × 66.7 cm) attached to the back of the chamber; the 

TOF tube is oriented vertically.  The main vacuum chamber is evacuated by two diffusion 

pumps (Diffstak 250/2000M and 160/700M, BOC Edwards) backed by mechanical pumps 

(E2M40 and RV12, respectively, BOC Edwards, Wilmington, MA).  The TOF is pumped by 

a turbomolecular pump (Turbo-V550 MacroTorr, 550 l/s N2, Varian Inc., Palo Alto, CA), 

backed by a mechanical pump (RV12, BOC Edwards). Convectron and ion gauges (Series 

375 and 358, Helix Technology Corporation, Mansfield, MA) measure the ion source and 

chamber pressures (all are uncorrected).  The base pressures are 7.5×10-8 mbar in the main 

chamber and 3.3×10-7 mbar in the TOF when the sources are closed.  In normal operation, 

one ESI source and the ASGDI source are open, and helium is added to the drift tube (~1.3 to 

2.0 mbar) through a precision leak valve (Model 203, Granville Phillips, Boulder, CO).  The 

main chamber pressure is then ~1×10-4 mbar and the pressure in the TOF region is 9×10-7 

mbar. 

 

Ion Sources. The basic design for a three ion source interface has been described 

previously [40].  The three sources are arranged around three faces of the 8” Conflat cube; 

one source is on the ion optical axis of the instrument, and the other two are orthogonal to it.  

The two ESI sources are identical in design. The interface region, which is 5.08 cm in 

diameter and 1.59 cm deep, is machined out of an 8” ConFlat flange. A 254 µm diameter 

aperture separates the interface region from atmosphere, and a 381 µm diameter aperture 

separates the interface region from the high vacuum region. Two lenses between the 
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apertures focus ions through the interface region.  Negative ions from perfluoro-1,3-

dimethylcyclohexane (PDCH, Sigma-Aldrich, St. Louis, MO) were used as the proton 

acceptor reagent.  Each ESI interface region operates at ~1 mbar during the experiment and is 

pumped by a mechanical pump (E2M40, BOC Edwards). The nano-ESI voltages are 

provided by 5 kV power supplies (ORTEC 659, Oak Ridge, TN). 

The ASGDI source interface region has the same design and dimensions as the ESI 

sources but without the interface lenses.  It is pumped by a mechanical pump (E2M40, BOC 

Edwards).  PDCH headspace vapors are sampled via a 0.64 cm diameter Nylon tube 

connecting the sample container and the outer aperture plate. The source pressure (~0.786 

mbar) is regulated by a bellows valve (SS-4BMW, Swagelok) inserted in the tubing between 

the compound headspace and the source region. The ASGDI source uses a 3 kV power 

supply (ORTEC 556, Oak Ridge, TN) and a high voltage pulser (PVX-4150, Directed 

Energy Corp., Fort Collins, CO) that is trigged by a TTL pulse from the Argos IT controller 

(Griffin Analytical Technologies, West Lafayette, IN), to apply a ~420 V pulse between the 

outer and inner (grounded) aperture plates.  This ASGDI pulse lasts for the time required to 

add reagent anions to the IT, typically 5 to 20 ms.  

Each ion source has three lenses attached to the vacuum side of the flange to focus the 

ions from the exit aperture of the source into the TQ.  The second lens is split and serves as a 

deflector for direction focusing. The TQ was modified by severing the electrical connection 

between diagonally opposing rods and by applying four independent DC potentials to the 

four TQ rods.  This allows ions to either be deflected 90o onto the axis of the instrument or to 

be passed straight through. 
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After the TQ, three lenses focus the ions into the IT. Two home-built high-voltage 

switches, controlled by TTL signals from the Argos IT controller, switch the voltages applied 

to the TQ and three subsequent lenses to allow ions from the desired ion source into the IT.  

Six nine-channel DC power supplies (±500 V, TD9500, Spectrum Solutions, Russellton, PA) 

generate the potentials for the ion optics from the sources to the ion trap. 

 

Ion Trap.  The 3D quadrupole IT (ideal geometry, r0 = 1.0 cm, z0 = 0.707 cm, RM 

Jordan, Grass Valley, CA) is attached to the drift tube; the exit is mounted 0.635 cm from the 

front plate of the drift tube.  The end caps are at ground, and the DC potential on the ring 

electrode is zero to prevent any asymmetric fields during ion trapping.  The 665 kHz ion 

trapping voltage is generated by a home-built LC circuit that provides up to 5000 V0p.  The 

maximum low mass cutoff value is ~m/z 1220 (calculated assuming an ideal ion trap 

geometry).  A 0 to 10 V dc control signal from the Argos IT controller determines the rf 

trapping voltage. A custom control generates the initial low-level rf voltage, measures 

feedback to stabilize the rf voltage, and contains calibration data. The initial rf voltage is first 

amplified to 0 to 200 V0p by a 50 W commercial amplifier (AG1020, T&C Power 

Conversion Inc., Rochester, NY) and finally by the custom LC circuit to the full 0 to 5000 

V0p. Measured stabilities of the full rf voltage are better than ±1%.  A TTL input allows the rf 

wave to be shut off in ~15 µs at any rf amplitude.  The shutoff is not locked to the rf phase. 

The ion trap timing and voltages are controlled by an Argos IT controller and 

software (Figure 2). The Argos provides the master clock for the entire instrument, as well as 

two independent arbitrary waveform outputs, digital TTL triggers, and analog control outputs 

(0-4 V).  One arbitrary waveform output provides the 0-10 V dc control signal for the ion 
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trap rf; the other is applied to the front endcap electrode (after being amplified by x17 to 85 

Vp-p) to perform mass selection and resonance excitation. The TTL triggers are used to start 

the ASGDI source, control the high voltage switches for the ion sources, and start the ion 

injection pulse for the mobility experiment. A custom 8-channel driver is used to increase the 

power of the TTL signals to enable them to trigger 50 Ω  loads. The ion injection TTL pulse 

also enables the high voltage pulser (PVX-4150, Directed Energy Corp., Fort Collins, CO, 

applied to the exit endcap) to eject ions from the ion trap. Typically this ejection pulse is 80 

to 400V applied for 3 to 5 µs. Two analog signals are used to control the quadrupole collision 

cell, described below. 

 

Drift Tube. The drift tube (modified from a design provided by Valentine et al [44, 

45]) consists of alternating 12.7 cm diameter 304 stainless steel lenses (0.16-cm thick, 12.7-

cm o.d. 4.40-cm  i.d.) and Delrin insulating rings (1.27 cm thick, 12.7 cm o.d., 8.26 cm i.d.). 

The drift tube is 44.45 cm long (together with the ion funnel) with a 0.5 mm diameter 

entrance aperture. A chain of 2 MΩ resistors connects the lenses, creating an electric field 

(typically 11 to 13 V/cm) down the drift tube. The voltage applied to the front of the drift 

tube is typically 30 to 100 V lower—for positive ions—than that of the ion trap. A 

capacitance manometer (690A13TRC, MKS Instrument, Methuen, MA) measures the He 

pressure inside the drift tube, which is typically ~1.33 to 2.00 mbar, controlled via another 

precision leak valve.  

 

Ion Funnel.  To improve ion transmission efficiency, an ion funnel [45, 46] is 

integrated into the back of the drift tube (Figure 1).  The funnel is based on the device 
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described by the Smith [46] and Jarrold groups [47].    After the last ring of the drift tube, a 

series of 25 stainless steel electrodes (0.0794 cm thick, 12.7 cm o.d.) with circular apertures 

whose inner diameters decrease linearly from 4.293 to 0.483 cm is attached. The ion funnel 

electrodes are sealed together using 0.3175 cm thick Delrin spacers and Viton o-rings giving 

a funnel length of 11.11 cm.  Thus, the helium pressure in the drift tube and ion funnel are 

the same.  The electrodes are connected to each other with a series of resistors (Vishay, 500 

kΩ, 0.6 W, ±1%).  One voltage applied to the entrance of the drift tube, and a second voltage 

is applied to the exit of the ion funnel to set the axial electric field down the drift tube-ion 

funnel assembly.    

In the ion funnel, alternate lenses are capacitively coupled (Vishay, 1000 pF, 1.5 

kVrms, ±20%) to form two lens chains. RF voltages (Ardara Technologies, North Huntingdon, 

PA) that are 180° degrees out of phase from each other are applied to each chain with 

amplitudes ~90 Vpp at 360 kHz. A capacitor to ground decouples the RF voltage from the 

drift tube lenses. There is one DC electrode after the exit of the ion funnel with a pressure-

limiting aperture (1.0 mm diam).   

In this instrument, the ion funnel increases the overall total ion signal by a factor of 

~7. Here, the basis of comparison is the same number of electrodes at the end of the drift tube 

all with the same ID and no rf voltage.  In this experiment, signal is measured by extracting 

ions from the TOF source directly to the TOF microchannel plate (MCP) detectors. 

Another set of three lenses behind the drift tube-ion funnel focuses ions into the 

quadrupole collision cell (Figure 1). The voltages supplied to the ion funnel dc lens, the 

lenses before the collision cell, the entrance and exit lenses of the collision cell, and the 
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lenses between the collision cell and the TOF are floated on the drift tube exit voltage using a 

nine-output floating power supply (TD9500HV, Spectrum Solutions Inc., Russellton, PA). 

 

Quadrupole-TOF.  The quadrupole collision cell (Figure 1) transmits ions from the 

ion funnel to the TOF.  It also provides for CID of ions labeled by mobility (i.e., a pseudo 

MS/MS step) [10, 11], although this capability is not shown in this paper.  The quadrupole (r0 

= 9.5 mm, 880 kHz, 3600 V0p per pole, Extrel, Pittsburgh, PA) is followed by an orthogonal 

W-reflectron TOF (TOFWerk, Thun, Switzerland).  The collision cell and its electronics are 

floated using an isolation transformer (SIT 30-1000, Stangenes Industries Inc., Palo Alto, 

CA).  The collision cell is mounted to the vacuum side of an 8” conflat flange that is attached 

to the back of the main vacuum chamber.  A capacitance manometer (Model 690A01TRC, 

MKS Instrument, Methuen, MA) measures the pressure inside the collision cell, which is 

typically He at ~8×10-4 mbar of He and is controlled via another precision leak valve. The 

Argos IT controller (Figure 2) supplies two 0 to 4 V analog signals that are amplified to 0 to 

10 and -200 to 200 V, respectively, and used by the quadrupole power supply to control the 

rf amplitude and to supply the dc bias to the collision cell rods to set the collision energy.   

After the ions exit the collision cell, they are focused into the source region of the 

TOF by a series of 10 lenses mounted in the hole machined out of the 8” conflat flange 

between the collision cell and the TOF, which is mounted vertically on the air side of the 

flange.  One lens is split into half-plates for vertical direction focusing.  The ions are pulsed 

upwards into the TOF drift region by a 2 µs pulse, and are then accelerated into the drift 

region by ~5800V. The voltages on the TOF electrodes and detector are controlled by the 

TOF software, which communicates directly with the TOF power supply. The TOF has a W-
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reflectron configuration and can be operated in V-mode or in W-mode.  Only the V-mode is 

used in this paper; the effective flight path is ~1.5 m.  

The ion detector is an eight-anode microchannel plate (MCP, Ionwerks, Houston, TX) 

that has post acceleration voltage of  ~6000 V. The signal is amplified ×100 by two four-

channel preamplifiers (XCD quad amplifier/discriminator, Ionwerks, Houston, TX) and then 

sent to an 8 channel time-to-digital converter (TDC×8, Ionwerks, Houston, TX). The TOF 

software reads the data from the TDC to create 2D data that contain both mobility time and 

mass spectral information. 

The timing of the TOF data acquisition is similar to methods described previously[7, 

12].  As shown by the bottom three traces in Figure 3, the TOF timing controller gets signals 

from the software and an external trigger and sends TTL triggers to the TDC×8 and to the 

TOF pulser. The mobility acquisition is started by the ion injection pulse (a trigger from the 

Argos), after which the TOF timing controller starts sending TTL triggers—at specific 

intervals depending on the mass range being acquired—simultaneously to the TDC×8 and the 

TOF extraction lenses. In a typical experiment 100 mass spectra are taken within each 10 ms 

mobility spectrum, up to a maximum m/z value of 2400.  

 

Results and Discussion 

IM-TOF after Ion/Ion Reactions.  In early research on proton transfer reactions with 

IM, a basic gas was introduced into the source region to create lower charge state ions 

through an in-source proton transfer reaction. In the present instrument, the total reaction 

time and reagent ion identity can be controlled.  The experimental timing diagram (Figure 3) 

is similar to those previously shown for ion/ion reactions [40], except the usual ion trap mass 
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analysis step is replaced by injection of product ions into the IM drift tube.  The experiment 

scan function shown in Figure 3 includes acquisition of nested flight time - mobility data. 

These capabilities are illustrated using charge reduction reactions of multiply charged 

ubiquitin ions with PDCH anions.  The spectrum of the anions from the ASGDI is shown in 

Figure 4; note that the main reagent ions are [M-F]-. and  

[M-CF3]
-..   

Charge reduction reactions can be used to produce ions in lower charge states than the 

usual ions generated solely by the ESI process.  Additionally, by reducing the charge states 

of the protein ions, the IM resolution for ions in different charge states can be improved.  

Figure 5a shows a 3D mobility-m/z spectrum of ubiquitin before proton transfer reactions. 

The main charge states observed for ubiquitin under these solution and source conditions are 

+8 and +9.  The mass resolution shown is m/∆m = 930 at m/z 1071.6. Mass accuracies are 

within 28 ppm, using an external calibration.  

For a typical ion/ion reaction-IM experiment, ubiquitin ions are injected for 50 to 100 

ms, PDCH- ions are injected for 20 to 40 ms, and both polarity ions are trapped in the IT to 

react for 50 to 150 ms depending on the product ion charge states desired. A 3 to 5 µs pulse 

at -100V is then applied to the back endcap of the ion trap to inject ions into the drift tube. 

For the IM separation the He pressure in the drift tube is 1.3 to 1.8 mbar, and the applied 

voltages are -150V on the entrance of the drift tube and -700 V on the last electrode of the 

ion funnel. 

Figure 5b and 5c show spectra after ion/ion charge reduction reaction of ubiquitin 

with PDCH.  Ubiquitin ions are converted to lower charge states, and the +1, +2 and +3 

ubiquitin ions can now be resolved in the IM dimension.  Previous attempts at analysis of 
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protein mixtures by CID after IM separation suffered because higher charge states of the 

proteins were not resolved in the mobility separation [48]. Thus, mobility labeling for 

proteins is not as useful as for peptides.  Ion/ion reaction combined with IM separations 

provides a new technique to make mobility labeling (for on-the-fly MS/MS) possible for 

intact proteins. The capability to effectively fragment proteins behind the drift tube, 

especially at these lower charge states, is still under development. 

Of course, ion cross-sections can be determined from the IM drift times:[49]  

                                                                                                    

 

 

where z is the charge state of ions, mi is the mass of ions, mb is the mass of the buffer gas, E 

is the electric field through the drift cell, L is the length of the drift cell, tD is the flight time 

through the drift cell, P is the pressure of the buffer gas, and T is the temperature of the 

buffer gas.   

Such cross-section measurements for ubiquitin ions are listed in Table 1. These data 

show that reducing charge state from +8 through +4 induces folding, i.e., lower measured 

cross sections.  Further charge reduction from +4 to +1 does not change the cross sections 

appreciably, as if the protein then remains in a folded state.  

The effects of ion-ion reactions and charge state on measured cross sections and 

folding are discussed in more detail in other papers [50, 51].  

 

CID on Intact Proteins followed by Charge Reduction.   Figure 6a shows a spectrum 

obtained after storing only the +7 charge state of ubiquitin.  Additional peaks are seen at m/z 
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values above that of the protein.  The abundances of these “extra” ions vary from day to day.  

They are also observed at similar abundances when the same sample is analyzed on a 

commercial triple quadrupole instrument, so we believe they are mainly impurities in the 

sample, rather than adducts formed inside the instrument.  We discriminate against these 

“extra” ions by trapping only the +7 ubiquitin ions in the results presented below.  

The +7 ubiquitin ions can readily be fragmented in the ion trap (Figure 6b).  These 

CID product ions are in a variety of relatively high charge states and are only moderately 

resolved in the IM dimension.  Thus, it is not easy to assign them at first.   

Figure 6c shows the spectrum resulting from charge reduction of the fragment ions in 

the ion trap after CID.  The spectrum shifts to higher m/z, and the dispersion in the IM 

dimension is greatly improved.  Many of the charge-reduced CID fragments can now be 

assigned by comparing the observed m/z values with that of fragments generated from the 

known sequence of ubiquitin. The assumption that the fragment ions in Figure 6c are in low 

charge states greatly simplifies these assignments.  Most of the fragments observed here are b 

and y ions, in agreement with those found in other studies [40, 52]; a few c ions may be 

present.   

The IM plot for the charge-reduced fragments (Figure 6c) shows distinct groups that 

fall along slanted lines of different slopes for peptide fragment ions in +1, +2 and +3 charge 

states, as noted by Clemmer and co-workers.  This phenomenon provides additional evidence 

to help assign charge states.  These groups merge closer together at higher charge states 

(Figure 6b)[13], which is one reason they are poorly resolved in Figure 6a.      

Armed with the identities of the charge-reduced fragments (Figure 6c), many of the 

original, more highly charged fragments in Figure 6b can now be assigned.  For example, 
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y58
2+ is in the charge-reduced spectrum, so a more highly charged version (y58

5+ in this case) 

should appear in the original CID spectrum (Figure 6b).  Here we assume that the peptide 

fragment ions do not dissociate further during the charge reduction reactions, as shown by 

McLuckey [27] . A number of other, similar cases are identified in Figure 6b.  The unusual 

c52
2+ and c59

2+ ions tentatively identified in the charge reduced spectrum can also be found in 

higher charge states in the original CID spectrum, which helps validate their assignment.         

 

Summary of the Instrument: 

From the above instrumentation description and result demonstration, this instrument 

combines ion mobility and ion/ion reaction capabilities, and it can be operated in variety of 

ways for different purposes.  Firstly, it is very powerful to manipulate charge state and study 

the conformation change (folding and unfolding) of the large biomolecules. We have done 

work on this, and a publication will follow this instrument paper. Secondly, multiple stage 

MS/MS with charge reduction reaction makes top down analysis more efficient because it 

helps to assign fragments by both ion mobility dispersion and charge reduction. Thirdly, 

other types of ion/ion reaction (ETD, protein and metal ions, protein complexes formation) 

can also be done on this instrument.  

There is a lot of room for instrument development, such as replacing the 3-D ion trap 

with a linear ion trap, exploring the w-mode of the time-of-flight, and performing one more 

step of CID or adding a high-energy CID collision cell after ion mobility separation. Though 

the sensitivity of this instrument is not very high, we believe it is a start of a new research 

area and will open a broad space to explore.  
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Table 1.  Measured cross-sections for ubiquitin ions in different charge states. 

 

Charge state m/z Cross-section (Å2) 

+8 1071.6 1444.0 

+7 1224.7 1405.3 

+6 1482.5 1365.1 

+5 1714.0 1054.5 

+4 2142.2 960.5 

+3 2856.0 938.2 

+2 4283.5 945.4 

+1 8565.9 944.7 
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Figure 1. Scale diagram showing overall instrument, including two ESI and one ASGDI 

sources, ion optics, quadrupole 
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Scale diagram showing overall instrument, including two ESI and one ASGDI 

sources, ion optics, quadrupole deflector, IT, IM drift tube with ion funnel and q

 

Scale diagram showing overall instrument, including two ESI and one ASGDI 

deflector, IT, IM drift tube with ion funnel and q-TOF. 
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Figure 2. Block diagram of instrument control electronics (see text for details).   The solid 

lines indicate instrument control electronics, and the dashed lines indicate hardware in the 

vacuum chamber. 
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Figure 3.  A generic scan function for an ion/ion reaction followed by nested flight time/ion 

mobility experiment. The top and second plots show the time during which positive and 

negative ions are injected. The third plot shows the amplitude of the rf trapping voltage 

applied to the ring electrode of the ion trap. The lower three plots show the times when ions 

after ion/ion reaction are injected into the drift tube, ion mobility data acquisition and TOF 

extraction pulses.  
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Figure 4.  Mass spectrum of PDCH reagent ions from ASGDI. 
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Figure 5. a) 3D mobility mass spectrum of ubiquitin; b) 3D mobility mass spectrum of 

ubiquitin after ion/ion reaction with PDCH negative ions for 20 ms; and c) spectrum after 

reaction for 200 ms.  The ions in lower charge states are more readily resolved by IM.  

Conditions:  0.30mg/ml ubiquitin aqueous solution with 1% acetic acid, drift voltage -150V 

to -700V, drift pressure 1.045 Torr, IT fill time 50 ms for ubiquitin. 
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Figure 6. a) 3-D ion mobility spectrum of isolated ubiquitin +7 ions from 3-D ion trap; b) 

CID fragments from ubiquitin +7 ions generated in 3-D ion trap; c) CID fragments from 

ubiquitin +7 ions after charge reduction with PDCH ions for 30 ms.  
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Abstract 

Positive ions from cytochrome c are studied in a 3-D ion trap/ion mobility 

(IM)/quadrupole-time-of-flight (TOF) instrument with three independent ion sources. The IM 

separation allows measurement of the cross section of the ions.  Ion/ion reactions in the 3-D 

ion trap that remove protons cause the cytochrome c ions to refold gently without other 

degradation of protein structure.  The conformation(s) of the product ions generated by 

ion/ion reactions in a given charge state are independent of the original charge state of the 

cytochrome c ions.  In the lower charge states (+1 to +5) cytochrome c ions made by the 

ion/ion reaction have a single conformation with cross section of ~ 1110 to 1180 Å2, even if 

the original +8 ion started with two conformations. These cross section values are close to 

those of the “most folded” conformation found previously.  The conformation expands 

slightly when the charge state is reduced from +5 to +1.  In a given charge state, ions created 
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by ion/ion reaction prefer to produce the more compact conformation in somewhat higher 

abundances, compared to those produced by the electrospray ionization (ESI) source alone. A 

variety of related studies that employ ion/ion reactions and IM to probe conformations of 

biomolecular ions should be possible by these methods.   

 

Introduction 

The determination of protein conformation is important in many biological 

applications.  Of the various methods for these measurements, mass spectrometry (MS) has 

certain advantages such as speed and the need for only small amounts of sample.  The 

variations of MS for the study of protein conformation include ion mobility (IM)[1-3], H/D 

exchange [4-8], and native electron capture dissociation (NECD)[9, 10].  Of these methods, 

IM provides a direct way to examine the gas-phase conformation of the ions by probing the 

average cross-section of the protein ions via collisions with buffer gas [3].  Early research on 

protein folding and unfolding was done with an IM-quadrupole instrument[1]. To study ions 

in lower charge states than those made directly from the electrospray ionization (ESI) source, 

a basic collision gas (e.g., acetophenone or 7-methyl-1, 3, 5-triazabicyclo [4,4,0] dec-5-

ene(MTBD)) [11] was introduced into the source region.  The collision gas extracted protons 

from the protein ion and created lower charge state ions through proton transfer reactions in 

the source.  In these studies, the reactions took place only in the atmospheric pressure ion 

source interface region.  Thus, control and variation of the reaction time and extent of 

reaction were difficult, and only certain reagent ions were available.   
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Recent instrumentation improvements have greatly extended the type of structural 

information and number of possible experiments available in this area.  The development of a 

3-D trap-IM-time of flight (TOF) instrument allows  time dependent studies of gas-phase 

protein ions, including folding, unfolding and structural transitions[12-15].  A multi-stage 

IMS-MS instrument[16, 17] provides two important new functions.  First, a protein ion in a 

specific structure can be selected by IMS, then activated and separated in the next drift 

region.  Second, “state- to- state” structural transitions can be studied by “structure selection-

activation” cycles.  

 Gas-phase ion-ion reactions provide another dimension for gas-phase bioanalysis by 

MS.  To date, these reactions have been mainly used to simplify complex MS/MS spectra[18, 

19] or provide  fragments for structural assignment [20, 21] by methods like electron transfer 

dissociation (ETD)[22-24].  A three-source-ion trap-drift tube-q-TOF instrument was 

recently developed by our group to combine ion-ion reactions with IM-TOF 

measurements[25, 26].  The present paper describes how proton transfer ion/ion reactions can 

be used to manipulate charge state and study the effect of ion/ion reactions on the 

conformation change of cytochrome c ions.   

 

Experimental  

The design and general operating conditions for the home-built three source-3-D trap-

IM-TOFMS are described in another paper [25]. Bovine heart cytochrome c (Sigma-Aldrich, 

St. Louis, MO) is the test protein because the behavior of its gas-phase ions has been studied 

extensively [12, 15, 27].  In most experiments, the protein was dissolved without further 

purification at 20 to 30 µM in water with 1% aqueous acetic acid; water alone was used for 
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some of the results shown in the last figure.  These samples were introduced through one 

nano-ESI source in positive mode. Perfluoro-1,3-dimethylcyclohexane (PDCH, Sigma-

Aldrich, St. Louis MO) was used as the proton transfer reagent. Negative PDCH ions were 

created by atmospheric sampling glow discharge ionization (ASGDI) in a second source. 

Both positive cytochrome c ions and negative PDCH ions were trapped together in the 3-D 

trap and allowed to react for selected times between 50 ms to 200 ms. The product ions were 

then injected into the drift tube for IM separation, followed by m/z analysis and detection by 

TOF-MS. The drift tube is 44.45 cm long, filled with helium gas at a pressure of 1 to 1.5 

Torr, and the axial electric field in the drift tube is 12 to 13 V/cm. Cross sections are 

calculated from the mass resolved mobility spectra in the usual fashion[3, 28].   

 

Results and Discussion 

Effect of Charge Reduction Reaction on the Conformation of Cytochrome c Ions.  

In 1% acetic acid/water solution, ESI produces cytochrome c ions in two main charge states 

(+8 and +9), as seen in the 3-D nested drift/flight [1]  IM-TOF  mass spectrum  (Figure 1).  

Although their IM drift times overlap, resolved mobility peaks for the +8 and +9 ions can be 

extracted because these ions are m/z resolved.  Note that the +8 ion has two resolvable cross 

sections, which are generally attributed to different gas-phase conformations.  

To study how ion/ion reactions affect the conformation of protein ions, either +8 or 

+9 ions are isolated in the 3-D ion trap first.  The mass spectra of isolated +8 and +9 ions and 

their cross section distributions are shown in Figure 2.  The cross section plots are similar to 

those obtained when both +8 and +9 ions are stored and ejected into the drift tube before m/z 
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resolution.  Isolation in the 3-D trap does not heat and unfold the ions appreciably, at least at 

time scales up to ~ 200 ms. 

PDCH anions are then injected into the ion trap from the ASGDI source and react 

with cytochrome c ions to remove protons for the desired time.  A typical spectrum after 

ion/ion reaction is shown in Figure 3. The resulting cross sections (Table 1) agree well with 

those reported in the literature [12].  The proton transfer reactions leave the protein ions in a 

range of charge states, which can be as low as +1.  These reactions do not remove the 

covalently-bound heme group, in agreement with other reports on myoglobin, which does not 

lose its noncovalently-bound heme group after proton transfer reactions [29].   

Cross-section values for cytochrome c ions in each charge state, produced by reaction 

of either isolated +8 or +9 ions with PDCH anions in the trap, are summarized in Table 1.  

The distributions of cross section observed for each charge state are indicated in Figure 4.  

These distribution plots indicate the relative abundances of the various folded conformations 

of the cytochrome c ion in a given charge state.   

In general, the distributions of conformations for a given charge state are similar 

whether the ions started as +8 or +9.  The distribution for the +7 ion made from +8 (i.e., in 

the left plot in Figure 4) has an additional, partly resolved peak at low cross section that is 

not seen in the distribution for the +7 ion made from +9.      The wider peaks seen for +7 and 

+6 ions after ion/ion reaction suggest that there may be several additional conformations not 

fully resolved by ion mobility.  The ions in lower charge states (+5 to +1) have only one 

mobility peak, even when the reactant ion was the +8 form with two mobility peaks 

originally. 
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It is tempting to assert that observation of just one mobility peak means the ions have 

only one conformation.  The narrowest mobility peak seen for the +9 ion of cytochrome c has 

a full width at half maximum (fwhm) of  ~180 µs (Figure 1).  Calculations indicate the 

contribution to the fwhm of this peak from diffusion to be only ~ 16 µs.   Under these 

experimental conditions, Cs7I6 
+ ions or protonated reserpine ions (from ESI of CsI or 

reserpine in water) yield single mobility peaks  ~80 µs fwhm, roughly half the width of the 

narrowest protein peaks.  Thus, each of the “single” mobility peaks seen for cytochrome c 

may actually correspond to the juxtaposition of unresolved peaks from ions in several 

conformations of similar size.  For brevity, we use phrases like “one conformation” or “a 

single conformation” in the discussion below, with this caveat in mind.        

These results show that the protein ions can fold to one or more compact 

conformations during the charge reduction reaction.  This observation is explained as 

follows.  When the protein ions pass into the vacuum system, the solvent molecules 

evaporate, and the attraction between hydrophobic portions of the molecules diminishes.  

Thus, the highly charged protein ion opens rapidly to an “unfolded” conformation [11, 12]. 

The ion/ion reaction then removes protons, whose charges keep the protein unfolded.  

Intramolecular charge repulsion becomes weaker, hydrogen bonds become more important, 

so the protein gradually refolds as more protons are removed.  

The cross-section of cytochrome c in the crystal structure is 1090 Å2 [12, 30] .  In the 

gas phase, ions with cross-sections from 1050 Å2 to 1350 Å2 are generally assigned to this 

“most compact” conformation[12, 30].  Thus, Figure 4 shows that the proton transfer 

reactions in the 3-D ion trap allow the original “unfolded” protein to pass gradually through 
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several partially folded conformations and eventually assume the most compact 

conformation, with a cross section close to that of cytochrome c in its crystal structure.   

Close examination of the mobility plots in Figure 4 shows that the +5 ion has the 

smallest cross section, and cross sections for those ions in the “most compact” conformation 

increase slightly as charge state is reduced from +5 to +1.  Apparently, as more protons are 

removed from the +5 ion, cytochrome c stays in one conformation, but the size of the 

molecule expands by a measurable amount.  This effect has not been seen previously.   

   

Conformation of Ions Made by Ion/Ion Reaction Compared to Those Produced 

Directly by ESI.  To generate ions in lower original charge states, cytochrome c is sprayed 

from water without acetic acid.  These ions are then measured without ion/ion reaction, and 

the results are compared to those obtained by charge reduction reactions of more highly 

charged ions from water/acetic acid solutions.   

Figure 5 compares cross section distributions for ions in a given charge state, prepared 

either by ion/ion reaction or by ESI directly.  First, consider the results for the +7 and +6 

charge states.  Within a given charge state, either +7 or +6, the number of conformations seen 

and their cross sections are almost the same, but the relative abundances of the various 

conformations can be different. More compact conformations are more abundant for the +5, 

+6 and +7 ions made by ion/ion reaction than by ESI directly.  For the +5 ions, the “most 

compact” conformation is most abundant, and at least one entirely different, more open 

conformation is seen only for the +5 ions made by ESI directly from water.  The “closed” +5 

conformer made by ion/ion reaction could not be converted to the more “open” structure by 

heating the +5 ions, i.e., by increasing the trapping time (as far as 4 s) or by increasing the 
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kinetic energy used to inject ions into the drift tube.  For the +4 ions in Figure 5, a “single” 

conformation with cross section ~ 1200 Å2 predominates, although there is some of an even 

smaller conformation for the ions produced directly by ESI. 

     

Conclusions  

Gas-phase ion-ion reactions combined with IM measurements provide a new way to 

study conformation changes in protein ions.  Exothermic processes like these multiple proton 

transfer reactions might be expected to simply heat the ions and unfold them[31] .  The 

observation of the protein ions in folded states after ion/ion reaction agrees with McLuckey’s 

findings that collisions with the bath gas in the 3-D trap cool the ions[32]. Thus, ion/ion 

reactions can be performed while the ions remain in, or perhaps re-fold into, biologically-

interesting conformations.   

In addition to the charge reduction reactions described here, this three source-ion 

trap-IM-TOFMS should facilitate a variety of ion/ion reaction studies pertinent to 

bioanalysis.  The identity and amount of reagent ion and the reaction time can be controlled 

over wide ranges.  Other reactions such as electron transfer dissociation [22, 23], metal 

addition [33] , and some sequential reactions (e.g., ETD followed by charge reduction to 

simplify assignment of the ETD fragments) should be possible.  The time progression of 

kinetic processes that change either the m/z value or the conformation of the ions should be 

measurable, at least for processes that occur on time scales long compared to the duration of 

the measurement (~ 1 s).  These and other studies are underway in our laboratory.   
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Table 1. Average cross-sections of cytochrome c in different charge states 

*Cross-section of ions from charge reduction of isolated +9 cytochrome c ions 
#Cross-section of ions from charge reduction of isolated +8 cytochrome c ions 

 

Charge State m/z *Cross-section (Å2) ± 56Å2 #Cross-section (Å2) ± 56Å2 

+9 1359.6 2116.3  

+8 1529.6 1601.0, 1847.6 1798.0, 2032.8 

+7 1748.0 1616.6, 1832.4 1612.4,1827.6 

+6 2039.2 1293.2, 1478.1 1197.6, 1474.3 

+5 2446.8 1077.7 1074.9 

+4 3058.3 1108.3 1162.4 

+3 4077.3 1154.5 1151.5 

+2 6115.5 1120.8 1179.2 

+1 12230 1185.4 1182.3 
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Figure 1.  Nested 3-D IM-TOF  mass spectrum of 30 µM cytochrome c in water  with 1% 

acetic acid.   The summed mass and ion mobility spectra are in the middle and at the lower 

right, respectively. The extracted IM spectra for cytochrome c +8  and +9 ions are displayed 

at the top. 
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Figure 2.  Mass and mobility spectra of +8 and +9 cytochrome c ions after isolation in the 

ion trap.  
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Figure 3.  3-D spectrum after isolated +8 cytochrome 

ion trap for 100 ms. 
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D spectrum after isolated +8 cytochrome c ions react with PDCH anions in the 
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Figure 4.  Distribution of cross sections for cytochrome c ions in each charge state. For the 

plots at the left, the cytochrome c ions were initially in the +8 state; ion/ion reaction time was 

50 ms to go to +4 and 110 ms to go to +1. The right plots are for charge reduction of +9 

cytochrome c ions for 40 ms to go to +4 and 80 ms to go to +1. 
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Figure 5.  Distribution of cross sections for cytochrome 

charge state of the ions observed is noted outside each box.  The top curve in each box is for 

ions made from +9 by ion/ion 

+8 (50 ms).  The bottom curves are for the ions in the indicated charge state observed directly 

from ESI from water, without acetic acid. 
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Figure 5.  Distribution of cross sections for cytochrome c ions in each charge state. The 

charge state of the ions observed is noted outside each box.  The top curve in each box is for 

ions made from +9 by ion/ion reaction (40 ms).  The middle curves are for ions made from 

+8 (50 ms).  The bottom curves are for the ions in the indicated charge state observed directly 

from ESI from water, without acetic acid.  

 

 

ions in each charge state. The 

charge state of the ions observed is noted outside each box.  The top curve in each box is for 

reaction (40 ms).  The middle curves are for ions made from 

+8 (50 ms).  The bottom curves are for the ions in the indicated charge state observed directly 
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CHAPTER 5 

General Conclusions 

 This dissertation focused on the development of MS instrumentation for ion/ion 

reaction studies combined with IMS-TOF measurements. Chapter 2 described the 

construction and characterization of an LIT for ion/ion reactions made with primarily 

commercial components. The LIT’s performance characteristics were examined, and its 

capability for both dual polarity trapping mode and transmission mode ion/ion reactions were 

demonstrated. Chapter 3 described the construction and performance of an IT-IMS-q-TOF. 

This instrument is the first MS to combine ion/ion reactions in an ion trap with IMS-TOF 

analysis. Top-down protein analysis of the intact protein ubiquitin was demonstrated using 

CID to fragment the protein followed by charge reducing the product ions via proton transfer 

ion/ion reactions. The ability of IMS to separate the product ions into charge state groups that 

fall on the same diagonal line on the drift plot gives this instrument an additional tool to 

identify fragment ions in protein MS/MS spectra.  

Chapter 4 presented experiments investigating the effects of proton transfer ion/ion 

reactions on the conformation of cytochrome c ions. These results show that as protons are 

stripped off the protein ions during the ion/ion reactions, the cytochrome c ions fold to one 

resolvable conformation regardless of whether the initial population of ions had one or two 

resolvable conformations. Other results for cytochrome c showed differences in the gas-

phase conformation of charge states created by ion/ion reaction and that of the same charge 

states created directly from ESI. Some charge states (+7 and +6) have similar conformations 

with different relative abundances, and one charge state (+5) has a conformation that could 

only be seen directly from ESI. No amount of heating, either in the ion trap or during 
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injection into the drift tube, could convert the more compact conformation of the +5 charge 

state into the more elongated conformation that is seen directly from ESI. Further 

experiments need to be conducted to determine the origin of this more elongated 

conformation of the +5 charge state of cytochrome c. One hypothesis is that the more 

elongated conformation is a result of different solution conditions. The +5 charge state 

generated directly from ESI is produced from a 100% water solution, and the +5 charge state 

produced via ion/ion reaction originated from a 1% aqueous acetic acid solution. Therefore, 

studies should be done to produce the +5 charge state via ion/ion reactions from a 100% 

water solution. For example, isolate the +7 charge state from a 100% water solution, charge 

reduce the isolated +7 via proton transfer ion/ion reactions to create the +5 charge state, and 

take an IMS-q-TOF spectrum to see what conformations this +5 charge state has. These 

experiments would provide a basis for comparison in which the solution conditions are 

equivalent between the ions formed directly from ESI and the ions formed via ion/ion 

reaction. Also, these experiments would give further insight into how the gas-phase 

conformation of cytochrome c ions compares to the solution-phase structure. 

A major stumbling block in the pursuit of further experiments, like the ones described 

in the previous paragraph, is the sensitivity of the IT-IMS-q-TOF instrument. A significant 

source of ion loss is inside the drift tube, mainly due to radial diffusion. The ion losses in the 

drift tube were reduced with the incorporation of the ion funnel at the back end of the drift 

tube, as described in Chapter 3. However, a second significant source of ion loss is the 3d ion 

trap. The trapping efficiency of ions injected into a 3d ion trap is typically less than 10%. 

Meaning, 90% of the ions delivered to the ion trap are lost. Conversely, the trapping 

efficiency of the LIT discussed in Chapter 2 is ~ 83%. Therefore, replacing the 3d ion trap of 
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the IT-IMS-q-TOF with the LIT described in Chapter 2 would increase the sensitivity of the 

IMS-q-TOF measurements. While some technical issues will need to be worked out, such as 

how to efficiently inject the ions from the LIT into the drift tube, plans are being made to 

modify the instrumentation in our lab to create an LIT-IMS-q-TOF. 

New chemical problems are always presenting themselves, especially in the field of 

protein identification and characterization. The solutions to these problems greatly depend on 

the quality and functionality of the analytical instruments. Therefore, instrumentation 

development will always be at the leading edge of analytical problem solving. 
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